1000 resultados para Modelos estadísticos de preferencia visual
Resumo:
Se aplican métodos ensayados en otros países (Scenic Beauty Estimation Method, SBE) para la determinación de las cualidades estéticas de masas forestales de interés recreativo a parcelas en diversas localizaciones del haya en Cataluña, abarcando diferencias significativas en estación, origen, edad y forma de masa. Las valoraciones se refieren a las cualidades estéticas de los rodales de haya vistos desde el interior del bosque, es decir, tal como son apreciados por parte de los visitantes de los montes. Las valoraciones se obtienen a través de paneles de observadores en sesiones fotográficas, se transforman a una escala común y se relacionan mediante análisis de regresión a las variables dasométricas tomadas en las parcelas de inventario. El desarrollo de modelos estadísticos que describen preferencias sociales permite medir la aportación de las diferentes variables dasométricas a la mejora estética de las masas de haya, y puede servir como guía en la ordenación de hayedos en que el uso público sea predominante o muy importante.
Resumo:
The educational system in Spain is undergoing a reorganization. At present, high-school graduates who want to enroll at a public university must take a set of examinations Pruebas de Aptitud para el Acceso a la Universidad (PAAU). A "new formula" (components, weights, type of exam,...) for university admission is been discussed. The present paper summarizes part of the research done by the author in her PhD. The context for this thesis is the evaluation of large-scale and complex systems of assessment. The main objectives were: to achieve a deep knowledge of the entire university admissions process in Spain, to discover the main sources of uncertainty and topromote empirical research in a continual improvement of the entire process. Focusing in the suitable statistical models and strategies which allow to high-light the imperfections of the system and reduce them, the paper develops, among other approaches, some applications of multilevel modeling.
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Los accidentes del tráfico son un fenómeno social muy relevantes y una de las principales causas de mortalidad en los países desarrollados. Para entender este fenómeno complejo se aplican modelos econométricos sofisticados tanto en la literatura académica como por las administraciones públicas. Esta tesis está dedicada al análisis de modelos macroscópicos para los accidentes del tráfico en España. El objetivo de esta tesis se puede dividir en dos bloques: a. Obtener una mejor comprensión del fenómeno de accidentes de trafico mediante la aplicación y comparación de dos modelos macroscópicos utilizados frecuentemente en este área: DRAG y UCM, con la aplicación a los accidentes con implicación de furgonetas en España durante el período 2000-2009. Los análisis se llevaron a cabo con enfoque frecuencista y mediante los programas TRIO, SAS y TRAMO/SEATS. b. La aplicación de modelos y la selección de las variables más relevantes, son temas actuales de investigación y en esta tesis se ha desarrollado y aplicado una metodología que pretende mejorar, mediante herramientas teóricas y prácticas, el entendimiento de selección y comparación de los modelos macroscópicos. Se han desarrollado metodologías tanto para selección como para comparación de modelos. La metodología de selección de modelos se ha aplicado a los accidentes mortales ocurridos en la red viaria en el período 2000-2011, y la propuesta metodológica de comparación de modelos macroscópicos se ha aplicado a la frecuencia y la severidad de los accidentes con implicación de furgonetas en el período 2000-2009. Como resultado de los desarrollos anteriores se resaltan las siguientes contribuciones: a. Profundización de los modelos a través de interpretación de las variables respuesta y poder de predicción de los modelos. El conocimiento sobre el comportamiento de los accidentes con implicación de furgonetas se ha ampliado en este proceso. bl. Desarrollo de una metodología para selección de variables relevantes para la explicación de la ocurrencia de accidentes de tráfico. Teniendo en cuenta los resultados de a) la propuesta metodológica se basa en los modelos DRAG, cuyos parámetros se han estimado con enfoque bayesiano y se han aplicado a los datos de accidentes mortales entre los años 2000-2011 en España. Esta metodología novedosa y original se ha comparado con modelos de regresión dinámica (DR), que son los modelos más comunes para el trabajo con procesos estocásticos. Los resultados son comparables, y con la nueva propuesta se realiza una aportación metodológica que optimiza el proceso de selección de modelos, con escaso coste computacional. b2. En la tesis se ha diseñado una metodología de comparación teórica entre los modelos competidores mediante la aplicación conjunta de simulación Monte Cario, diseño de experimentos y análisis de la varianza ANOVA. Los modelos competidores tienen diferentes estructuras, que afectan a la estimación de efectos de las variables explicativas. Teniendo en cuenta el estudio desarrollado en bl) este desarrollo tiene el propósito de determinar como interpretar la componente de tendencia estocástica que un modelo UCM modela explícitamente, a través de un modelo DRAG, que no tiene un método específico para modelar este elemento. Los resultados de este estudio son importantes para ver si la serie necesita ser diferenciada antes de modelar. b3. Se han desarrollado nuevos algoritmos para realizar los ejercicios metodológicos, implementados en diferentes programas como R, WinBUGS, y MATLAB. El cumplimiento de los objetivos de la tesis a través de los desarrollos antes enunciados se remarcan en las siguientes conclusiones: 1. El fenómeno de accidentes del tráfico se ha analizado mediante dos modelos macroscópicos. Los efectos de los factores de influencia son diferentes dependiendo de la metodología aplicada. Los resultados de predicción son similares aunque con ligera superioridad de la metodología DRAG. 2. La metodología para selección de variables y modelos proporciona resultados prácticos en cuanto a la explicación de los accidentes de tráfico. La predicción y la interpretación también se han mejorado mediante esta nueva metodología. 3. Se ha implementado una metodología para profundizar en el conocimiento de la relación entre las estimaciones de los efectos de dos modelos competidores como DRAG y UCM. Un aspecto muy importante en este tema es la interpretación de la tendencia mediante dos modelos diferentes de la que se ha obtenido información muy útil para los investigadores en el campo del modelado. Los resultados han proporcionado una ampliación satisfactoria del conocimiento en torno al proceso de modelado y comprensión de los accidentes con implicación de furgonetas y accidentes mortales totales en España. ABSTRACT Road accidents are a very relevant social phenomenon and one of the main causes of death in industrialized countries. Sophisticated econometric models are applied in academic work and by the administrations for a better understanding of this very complex phenomenon. This thesis is thus devoted to the analysis of macro models for road accidents with application to the Spanish case. The objectives of the thesis may be divided in two blocks: a. To achieve a better understanding of the road accident phenomenon by means of the application and comparison of two of the most frequently used macro modelings: DRAG (demand for road use, accidents and their gravity) and UCM (unobserved components model); the application was made to van involved accident data in Spain in the period 2000-2009. The analysis has been carried out within the frequentist framework and using available state of the art software, TRIO, SAS and TRAMO/SEATS. b. Concern on the application of the models and on the relevant input variables to be included in the model has driven the research to try to improve, by theoretical and practical means, the understanding on methodological choice and model selection procedures. The theoretical developments have been applied to fatal accidents during the period 2000-2011 and van-involved road accidents in 2000-2009. This has resulted in the following contributions: a. Insight on the models has been gained through interpretation of the effect of the input variables on the response and prediction accuracy of both models. The behavior of van-involved road accidents has been explained during this process. b1. Development of an input variable selection procedure, which is crucial for an efficient choice of the inputs. Following the results of a) the procedure uses the DRAG-like model. The estimation is carried out within the Bayesian framework. The procedure has been applied for the total road accident data in Spain in the period 2000-2011. The results of the model selection procedure are compared and validated through a dynamic regression model given that the original data has a stochastic trend. b2. A methodology for theoretical comparison between the two models through Monte Carlo simulation, computer experiment design and ANOVA. The models have a different structure and this affects the estimation of the effects of the input variables. The comparison is thus carried out in terms of the effect of the input variables on the response, which is in general different, and should be related. Considering the results of the study carried out in b1) this study tries to find out how a stochastic time trend will be captured in DRAG model, since there is no specific trend component in DRAG. Given the results of b1) the findings of this study are crucial in order to see if the estimation of data with stochastic component through DRAG will be valid or whether the data need a certain adjustment (typically differencing) prior to the estimation. The model comparison methodology was applied to the UCM and DRAG models, considering that, as mentioned above, the UCM has a specific trend term while DRAG does not. b3. New algorithms were developed for carrying out the methodological exercises. For this purpose different softwares, R, WinBUGs and MATLAB were used. These objectives and contributions have been resulted in the following findings: 1. The road accident phenomenon has been analyzed by means of two macro models: The effects of the influential input variables may be estimated through the models, but it has been observed that the estimates vary from one model to the other, although prediction accuracy is similar, with a slight superiority of the DRAG methodology. 2. The variable selection methodology provides very practical results, as far as the explanation of road accidents is concerned. Prediction accuracy and interpretability have been improved by means of a more efficient input variable and model selection procedure. 3. Insight has been gained on the relationship between the estimates of the effects using the two models. A very relevant issue here is the role of trend in both models, relevant recommendations for the analyst have resulted from here. The results have provided a very satisfactory insight into both modeling aspects and the understanding of both van-involved and total fatal accidents behavior in Spain.
Resumo:
OBJETIVO: Caracterizar la frecuencia y tipo de uso de teorías o modelos citados en artículos publicados en una revista latinoamericana de salud publica entre los años 2000 y 2004. MÉTODOS: Se escogió la Revista de Saúde Pública por su historia de publicación periódica sin interrupción e impacto actual en la comunicación científica del área. Se aplicó un procedimiento estándar para leer los artículos y clasificarlos en una tipología arbitraria de cuatro niveles según la profundidad del uso dado a los referentes teóricos o modelos citados en los textos para describir asuntos o problemas abordados, formular métodos y discutir a rigor los hallazgos comunicados. RESULTADOS: Se leyeron 482 artículos: 421 (87%) investigaciones, 42 (9%) revisiones o especiales y 19 (4%) textos de opinión o reflexión. En las 421 investigaciones, 286 (68%) tuvieron enfoque cuantitativo, 110 (26%) cualitativo y 25 (6%) mixtos. La cita de teorías o modelos fue infrecuente; 90 (19%) artículos revisados citan algun referente. Según la profundidad de uso 29 (6%) de los 90 fueron tipo I, 9 (1,9%) tipo II, 6 (1,3%) tipo III y 46 (9,5%), tipo IV. CONCLUSIONES: La citación de modelos fue nueve veces más frecuente que la de alguna teoría; el uso ideal, el tipo IV, ocurrió en apenas uno de cada diez artículos analizados. Hay relevancia de explicitar los marcos teóricos y modelos usados al abordar temas, formular hipótesis, diseñar métodos y discutir hallazgos en las contribuciones de las revistas científicas del área.
Resumo:
Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.
Resumo:
Resumen basado en el de la publicación
Resumo:
Monográfico con el título: 'Aportaciones de las nuevas tecnologías a la investigación educativa'. Resumen basado en el de la publicación
Resumo:
Dentro de las diversas áreas de la Fitopatología, la Epidemiología es la que posee un mayor potencial para el uso de modelos, porque esta ciencia es responsable de la descripción de las enfermedades a nivel de poblaciones y comunidades. Como las poblaciones están formadas generalmente por un número de individuos, es imposible e indeseable descubrir qué ocurre con individuos aislados. Los epidemiólogos precisan de alguna manera representar lo que sucede en las poblaciones de plantas, frente a los patógenos, en diferentes situaciones de ambiente. Haciendo una revisión de literatura, se verificó que hay dos caminos por los cuales los epidemiólogos estudian las enfermedades en poblaciones de plantas a través de modelos matemáticos, y de modelos estadísticos.
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.
Resumo:
Aquest estudi analitza les pràctiques diàries, els valors socials i les actituds de la població catalana en el procés de transició cap a la societat xarxa. Analitza el comportament de les persones a Internet i fora d'Internet, investigant el paper específic dels usos d'Internet a l'hora d'influenciar pràctiques i actituds. Es basa en les respostes a una enquesta de 3.005 individus, una mostra representativa de la població catalana el 2002. L'enquesta es va fer entre el febrer i el maig del 2002, i es basava en entrevistes cara a cara a partir d'un qüestionari de 179 preguntes. Es van utilitzar fonts secundàries per a situar els resultats catalans, particularment sobre els usos d'Internet, en el context global. L'anàlisi es va completar el 2007 incorporant-hi noves dades secundàries. L'estudi va cobrir pràctiques socials de treball, comunicació, sociabilitat, usos d'espai i temps, usos d'Internet, identitat cultural, pràctica política, associacionisme i formació de projectes d'autonomia. Es van construir diversos models estadístics per a proporcionar una anàlisi causal de cada una d'aquestes àrees d'estudi. El descobriment més significatiu fa referència a la relació entre els usos d'Internet i la construcció d'autonomia per part d'actors socials. Fent servir anàlisis factorial, l'estudi va definir cinc índexs d'autonomia que eren estadísticament independents: autonomia personal, autonomia professional, autonomia comunicativa, autonomia corporal i autonomia sociopolítica. Cada un d'aquests índexs d'autonomia independents estan fortament associats amb la freqüència i la intensitat de l'ús d'Internet, i les relacions observades es mantenen quan es controlen per variables sociodemogràfiques. A partir d'aquest estudi es pot afirmar que Internet és una plataforma important per a la construcció d'autonomia en la societat xarxa. En general, la societat catalana sembla que canviï de manera similar a altres societats en transició, amb l'èmfasi afegit del paper del territori i la família a l'hora d'enfortir les relacions socials, amb la contribució positiva d'Internet a un dens patró d'interacció social.