913 resultados para Mn- or Cr-containing nitrogenase component 1
Resumo:
一,缺失nifZ的棕色固氮菌突变种钼铁蛋白的晶体生长的研究进展 在一定的结晶条件下,缺失nifZ的棕色固氮菌突变种钼铁蛋白将从溶液中结晶出深棕色的短斜四棱柱晶体。PEG 8000、MgCl2、NaCl、Tris的浓度及缓冲液的pH对该蛋白的结晶及晶体生长影响的系统研究表明,它们的浓度和pH较低时,不出晶体;当pH高于8.0,随着前三种化合物浓度的逐渐提高,便在一周内出现大量小品体;再提高浓度后,便延长结晶时问但出质好、数少而个大的晶体;然后晶体随浓度的提高而又变小、变多、甚至晶质变差,直至不再出晶体。影响晶体生长的各因子的最适浓度随其它条件的改变而有所不同。当缓冲液的pH为8.2而PEG 8000,MgCl’、NaCI、蛋白质和Tris的浓度分别为1.86%、300 mmol/L、400 mmoUL、4.64g/L、53 mmo/L时,首次发现在一滴悬滴结晶液中只有一颗较大的优质晶体(最大两边线度均为0.16mm)。 二,从分别含Mn和Cr的培养基中生长的固氮菌突变种UW3中纯化的固氮酶的特性和结晶 缺失nifH基因的棕色固氮菌突变种UW3,在有钼环境中不能固氮生长,但能在无钼而含MnS01或Na2Cr01的无氮培养基中固氮生长。分别经超声破碎、加热除去部分杂蛋白、离子交换柱层析和Sephacryl S-200或S-300柱层析的分离纯化,分别得到二种固氮酶组分l蛋白。金属元素测定表明,这两种蛋白除含铁元素外还分别含有锰和铬元素。它们的吸收光谱、CD和AR谱互不完全相同,并都与OP-MoFe蛋白存在较大差异。含Mn固氮酶也能还原C2H2、质子和N2,对它们的还原的比活性都分别约为MoFe蛋白活性的50%。初步结果表明,这一突变种在这两种培养条件下都可能已表达了不同于已发现的三种固氮酶的新固氮酶组分l蛋白-MoFe、VFe和FeFe蛋白,分别为含Mn或Cr的固氮酶组分1蛋白,分别被称为uw3,-MnFe蛋白和UW3-CrFe蛋白。通过对PEG 8000、MgCI2、NaCI和缓冲液的种类和浓度等结晶条件的大量优化组合实验,首次获得uw3-MnFe蛋白和UW3-CrFe蛋白的的晶体。最大晶体为21.4×14.3×2.1μm。
Resumo:
We have developed a series of 1-alkyl-3-methylimidazolium tetrachlorocuprate(II) and dibromoargentate(I) ionic liquids with enhanced antimicrobial activity when compared with 1-alkyl-3-methylimidazolium chloride ionic liquids. These new ionic liquids proved to be effective against a range of pathogenic bacteria and fungi.
Resumo:
Mode of access: Internet.
Resumo:
Following growth doping strategy and using dopant oxides nanocrystals as dopant sources, we report here two different transition-metal ions doped in a variety of group II-VI semiconductor nanocrystals. Using manganese oxide and copper oxide nanocrystals as corresponding dopant sources, intense photoluminescence emission over a wide range of wavelength has been observed for different host nanocrystals. Interestingly, this single doping strategy is successful in providing such highly emissive nanocrystals considered here, in contrast with the literature reports that would suggest synthesis strategies to be highly specific to the particular dopant, host, or both. We investigate and discuss the possible mechanism of the doping process, supporting the migration of dopant ions from dopant oxide nanocrystals to host nanocrystals as the most likely scenario.
Resumo:
Doping of magnetic element Mn and Cr in GaN was achieved by thermal diffusion. The conductivity of the samples, which were all n-type, did not change significantly after the diffusion doping. X-ray diffraction measurements revealed no secondary phase in the samples. Experiments using superconducting quantum interference device (SQUID) showed that the samples were ferromagnetic at 5 and 300 K, implying the Curie temperature to be around or over 300 K, despite their n-type conductivity. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage. (C) 2009 Elsevier Inc. All rights reserved
Resumo:
In this work were synthesized the materials called vanadyl phosphate, hydrogen vanadyl phosphate and vanadyl phosphate doped by transition metals with the aim in adsorption the following compounds: ammonia, hydrogen sulfide and nitrogen oxide. To characterize the starting compounds was used DRX, FTIR, FRX and TG analysis. After the characterization of substrates, proceeded de adsorption of NH3 and H2S gases in reactor, passing the gases with continuous flow for 30 min and room temperature. Gravimetric data indicate that the matrices of higher performance in adsorption of ammonia was those doped by aluminum and manganese, obtaining results of 216,77 mgNH3/g and 200,40 mgNH3/g of matrix, respectively. The matrice of higher performance in adsorption of hydrogen sulfide was that doped by manganese, obtaining results of 86,94 mgH2S/g of matrix. The synthesis of substrates VOPO4.2H2O and MnVOPO4.2H2O with nitrogen oxide was made in solution, aiming the final products VOPO4.G.nH2O and MnVOPO4.G.nH2O (G = NO and n = number of water molecules). The thermo analytical behavior and the infrared spectroscopy are indicative of formation of VOPO4.2,5NO.3H2O compound. Results of scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDS) of materials vanadyl phosphate and vanadyl phosphate modified after reaction in solid state or in solution with the gases show morphology changes in substrates, beyond the formation of orthorhombic sulfur crystals over their respective hosts when these adsorb hydrogen sulfide
Resumo:
The non-ohmic properties of the 98.90% SnO2+(1-x)%CoO+0.05% Cr2O3+0.05% Nb2O5+x% MnO2 varistor system (all of them in mol %), as well as the influence of the oxidizing and reducing atmosphere on this system were studied in this work. Experimental evidence indicates that the electrical properties of the varistor depend on the defects that occur at the grain boundary and on the adsorbed oxygen species such as O''(2), O'(2), O in this region. Thermal treatments at 900 degreesC in oxygen and nitrogen atmospheres indicated such a dependence with the values of the non-linearity coefficient (alpha) increasing under oxygen atmosphere, being reduced in nitrogen atmosphere and restored after a new treatment in oxygen atmosphere, presenting a reversibility in the process. EDS analysis accomplished by SEM showed the distribution of the oxides in the varistor matrix. (C) 2002 Kluwer Academic Publishers.
Resumo:
dThe detection of aromatic compounds from pesticides and industrial wastewater has become of great interest, since these compounds withstand chemical oxidation and biological degradation, accumulating in the environment. In this work, a highly sensitive biosensor for detecting catechol was obtained with the immobilization of Cl-catechol 1,2-dioxygenase (CCD) in nanostructured films. CCD layers were alternated with poly(amidoamine) generation 4 (PAMAM G4) dendrimer using the electrostatic layer-by-layer (LbL) technique. Circular dichroism (CD) measurements indicated that the immobilized CCD preserved the same conformation as in solution. The thickness of the very first CCD layers in the LbL films was estimated at ca. 3.6 nm, as revealed by surface plasmon resonance (SPR). PAMAM/CCD 10-bilayer films were employed in detecting diluted catechol solutions using either an optical or electrical approach. Due to the mild immobilization conditions employed, especially regarding the pH and ionic strength of the dipping solutions, CCD remained active in the films for periods longer than 3 weeks. The optical detection comprised absorption experiments in which the formation of cis-cis muconic acid, resulting from the reaction between CCD and catechol, was monitored by measuring the absorbance at 260 nm after film immersion in catechol solutions. The electrical detection was carried out using LbL films deposited onto gold-interdigitated electrodes immersed in aqueous solutions at different catechol concentrations. Using impedance spectroscopy in a broad frequency range (1Hz-1kHz), we could detect catechol in solutions at concentrations as low as 10(-10) M. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
T cell receptors (TCR) containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX). The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch affecting overall TCR binding affinity.
Resumo:
Gypsum and halite crystals, together with saponite and phillipsite, were found in a vein in a basalt sill 625 m below the sea floor at DSDP Site 395A, located 190 km west of the crest of the Mid-Atlantic Ridge. The delta34S value of the gypsum (+19.4?) indicates a seawater source for the sulfate. The delta18O values of the saponite (+19.9?) and phillipsite (+18.1?) indicate either formation from normal seawater at about 55°C or formation from delta18O-depleted seawater at a lower temperature. The gypsum (which could be secondary after anhydrite) was formed by reaction between Ca[2+] released from basalt and SO4[2-] in circulating seawater. The halite could have formed when water was consumed by hydration of basalt under conditions of extremely restricted circulation. A more probable mechanism is that the gypsum was originally precipitated as anhydrite at temperatures above 60°C. As the temperature dropped the anhydrite converted to gypsum. The conversion would consume water, which could cause halite precipitation, and would cause an increase in the volume of solids, which would plug the vein and prevent subsequent dissolution of the halite.
Resumo:
Microfilm. Ann Arbor, Mich., University Microfilms [n.d.] (American culture series, Reel 240.1)
Resumo:
Vol. 5 has title "Original letters, written during the reigns of Henry VI., Edward IV., Edward V., Richard III., and Henry VII." This volume was published after Fenn's death by his nephew, William Frere, and includes an "Advertisement containing notices of the life of Sir John Fenn, by ... Frere."