993 resultados para Mixed-valence Compounds
Resumo:
Cyano-bridged mixed-valence compounds have been known for a long time, i.e., Prussian Blue polymeric solids. Nevertheless, the interest in discrete complexes having a well-defined molecular nuclearity has emerged more recently. There are numerous examples of cyano-bridged mixed-valence complexes in the recent literature, as they show promising and useful applications in electrochromism, molecular magnetism and molecular electronics. In this paper, the reactivity, synthetic and structural chemistry, as well as some physical and chemical properties, of a series of discrete dinuclear mixed-valence cyano-bridged complexes of general formulae [LnCoIII(mu NC)Fe-II(CN)(5)](-) (L = pentadentate macrocyclic ligand) are reviewed. Special emphasis is given to the synthetic strategy, redox properties and metal-to-metal-charge-transfer (MMCT) band energy. Tuning the MMCT transition energy has been possible by changing the redox potential of the metal centers, both through structural and outer-sphere changes. The redox processes that involve the appearance and disappearance of these MMCT bands in the visible region have been dealt with in relation to the possible uses of the complexes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV–vis–NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.
Resumo:
An approach is proposed here to calculate mixed valence ratios in molecular compounds. Synchrotron x-ray powder diffraction experiments were conducted to determine the Fe(+3)/Fe(+2) ratio in Prussian Blue compounds, which were elected as an example of the use of this approach. As a result, a resonant x-ray diffraction measurement provided direct evidence that the vacant [Fe(CN)(6)] group was randomly absent from similar to 31% of the structure, which was indicated by structural differences caused by variations in the anomalous dispersion term. These findings are very important for a deeper understanding of the changes occurring in properties during in situ compositional variations. (c) 2008 American Institute of Physics.
Resumo:
The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co-III-Fe-II-Co-III compounds derived from known dinuclear [{LnCoIII(mu-NC)}Fe-II(CN)(5)](-) complexes (L-n = N-5 or N3S2 n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and C-13 NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{LnCoIII(mu-NC)}(2)Fe-II(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe-III/II redox potential upon addition of a tripositively charged {(CoLn)-L-III} moiety. The Co-III/II redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe-II-CN-Co-III units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.
Resumo:
The cyano-bridged complexes cis-[L14CoIIINCFeII(CN)5]– and cis-[L14CoIIINCFeIII(CN)5] (L14= 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) are prepared and characterised spectroscopically, electrochemically and structurally: Na{cis-[L14CoIIINCFeII(CN)5]}·9H2O, monoclinic space group P21/c, a= 14.758(3), b= 10.496(1), c= 19.359(3) , = 92.00(2)°, Z= 4; cis-[L14CoIIINCFeIII(CN)5]·4H2O, orthorhombic space group P212121, a= 9.492(1), b= 14.709(2), c= 18.760(3) , Z= 4. In both complexes, the pendant amine is cis to the bridging cyanide ligand. An analysis of the metal-to-metal charge transfer (MMCT) transition in these systems with Hush theory has been carried out. This has revealed that the change in the configuration of the macrocycle both decreases the redox isomer energy difference (E1/2) and increases the reorganisational energy () of the cis-[L14CoIIINCFeII(CN)5]– complex with respect to the trans-[L14CoIIINCFeII(CN)5]– complex, the result being that both isomers display an MMCT transition of similar energy. The variation in redox isomer energy differences of the configurational isomers has been related to strain energy differences by molecular mechanics analysis of the [CoL14Cl]2+/+ precursor complexes.
Resumo:
The new hexanuclear mixed-valence vanadium complex [V3O3(OEt)(ashz)(2)(mu-OEt)](2) (1) with an N,O-donor ligand is reported. It acts as a highly efficient catalyst toward alkane oxidations by aqueous H2O2. Remarkably, high turnover numbers up to 25000 with product yields of up to 27% (based on alkane) stand for one of the most active systems for such reactions.
Resumo:
Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
Resumo:
Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral ""RuCl(3)(dppb)"" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group FT. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2)(4n2+) and {CoTPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.
Resumo:
Anomalous thermal behavior on the EPR linewidths has been observed for Gd impurities diluted in CexA1-xBn (A=La,Y, B=Ir,Os,Rh,Pd) intermediate-valence compounds. In this work we show that the exchange interaction between the local magnetic moments and the intermediate-valence host ions has an important contribution to the relaxation rates of the local moments. We calculated the relaxation, using the Redfield formalism and the ideas contained in the interconfigurational fluctuation model of Hirst. We show that the exchange interaction contribution has an exponential dependence on the excitation energy of the intermediate-valence ions. © 1992 The American Physical Society.
Resumo:
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.
Resumo:
The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.