1000 resultados para Minería de datos (Informática)
Resumo:
La intención del proyecto es mostrar las diferentes características que ofrece Oracle en el campo de la minería de datos, con la finalidad de saber si puede ser una plataforma apta para la investigación y la educación en la universidad. En la primera parte del proyecto se estudia la aplicación “Oracle Data Miner” y como, mediante un flujo de trabajo visual e intuitivo, pueden aplicarse las distintas técnicas de minería (clasificación, regresión, clustering y asociación). Para mostrar la ejecución de estas técnicas se han usado dataset procedentes de la universidad de Irvine. Con ello se ha conseguido observar el comportamiento de los distintos algoritmos en situaciones reales. Para cada técnica se expone como evaluar su fiabilidad y como interpretar los resultados que se obtienen a partir de su aplicación. También se muestra la aplicación de las técnicas mediante el uso del lenguaje PL/SQL. Gracias a ello podemos integrar la minería de datos en nuestras aplicaciones de manera sencilla. En la segunda parte del proyecto, se ha elaborado un prototipo de una aplicación que utiliza la minería de datos, en concreto la clasificación para obtener el diagnóstico y la probabilidad de que un tumor de mama sea maligno o benigno, a partir de los resultados de una citología.
Resumo:
El campo de las Bio-Ciencias está en pleno desarrollo y expansión. La variedad de tecnologías disponibles y aplicaciones están generando una cantidad abrumadora de datos que necesitan de protocolos, conceptos y métodos que permitan un análisis uniforme y asequible. Otra característica distintiva de estos ámbitos es su condición multidisciplinaria, donde interactúan (y cada vez más) disciplinas como la biología, la matemática, la estadística, la informática, la inteligencia artificial, etc. por lo que cualquier esfuerzo tendiente a aumentar el nivel de comunicación y entendimiento entre las disciplinas redundará en beneficios. La Minería de Datos, concepto que aglutina una variedad de metodologías analíticas, proporciona un marco conceptual y metodológico para el abordaje del análisis de datos y señales de distintas disciplinas. Sin embargo, cada campo de aplicación presenta desafíos específicos que deben ser abordados particularmente desde la racionalización de conceptos específicos del ámbito. La multidisiplinaridad es particularmente importante en aplicaciones biomédicas y biotecnológicas, donde se modelan fenómenos biológicos y se desarrollan métodos analíticos para generar nuevas estrategias diagnósticas, predictivas a partir de los datos recogidos. En este proyecto se integrarán las experiencias y criterios de distintas disciplinas que están involucradas en el desarrollo experimental en bio-ciencias, desde la biología molecular y la bioingeniería hasta la bioinformática y la estadística. La finalidad es elaborar protocolos que permitan extraer conocimiento en problemas biotecnológicos (particularmente experimentos genómicos) que se basan en la investigación sólida de los procedimientos estadísticos / bioinformáticos relevante para el manejo de datos experimentales. EL objetivo general de este proyecto es contribuir a la instauración de un Proceso Unificado de Análisis en Biotecnología generando conocimiento que permita el desarrollo de nuevas metodologías de análisis, con especial énfasis en métodos lineales y no-lineales de clasificación / predicción. La comprensión y estandarización de los requerimientos y etapas de experimentos en bio-ciencias es imprescindible para el éxito de proyectos biotecnológicos / biomédicos.
Resumo:
Monográfico con el título: 'Aportaciones de las nuevas tecnologías a la investigación educativa'. Resumen basado en el de la publicación
Resumo:
Trabajo Fin de Grado de la doble titulación de Grado en Ingeniería Informática y Grado en Administración y Dirección de Empresas.
Resumo:
El propósito principal de esta investigación es la aplicación de la Metaplasticidad Artificial en un Perceptrón Multicapa (AMMLP) como una herramienta de minería de datos para la predicción y extracción explícita de conocimiento del proceso de rehabilitación cognitiva en pacientes con daño cerebral adquirido. Los resultados obtenidos por el AMMLP junto con el posterior análisis de la base de datos ayudarían a los terapeutas a conocer las características de los pacientes que mejoran y los programas de rehabilitación que han seguido. Esto incrementaría el conocimiento del proceso de rehabilitación y facilitaría la elaboración de hipótesis terapéuticas permitiendo la optimización y personalización de las terapias. La evaluación del AMMLP se ha realizado con datos proporcionados por el Institut Guttmann. Los resultados del AMMLP fueron comparados con los obtenidos con una red neuronal de retropropagación y con árboles de decisión. La exactitud en la predicción obtenida por el AMMLP en la subfunción cognitiva memoria verbal-visual fue de 90.71 %, resultado muy superior a los obtenidos por los demás algoritmos.
Resumo:
[ES]Uno de los elementos de más importancia en la movilidad de las ciudades desarrolladas es la gestión del tráfico rodado. La movilidad tiene una influencia determinante en la calidad de vida de los ciudadanos por diversas razones, entre la que destacan la seguridad, la eficiencia y el impacto medioambiental. Por ello es preciso dotar a los gestores de esa movilidad de herramientas que les permitan disponer de una idea precisa de la situación actual y si es posible, estimaciones del estado futuro. Esas herramientas les facilitan la toma de decisiones y el planeamiento de la movilidad. En este punto concreto se enmarca este Trabajo Fin de Grado...
Resumo:
En este Trabajo Fin de Grado se lleva a cabo la implementación de un mundo 3D a través del uso del entorno Unity en el se cual realizará el desarrollo de un agente 3D el cual interactúe con el entorno que le rodea. Para ello haremos uso de algoritmos relacionado con la inteligencia artificial así como aplicación de algoritmos relacionados con la minería de datos tales como redes neuronales basando su aprendizaje en algoritmos evolutivos o arboles de decisión, respectivamente. Así pues, el objetivo de este proyecto es la creación de un agente 3D el cual sea capaz de adaptarse al entorno que le rodea, siendo hostiles algunos de estos entornos. Habrá principalmente 2 entornos los cuales serán una ciudad donde el agente deberá recoger clientes en su rol de taxista y soltarlas reconociendo a través de una serie de variables que personas son de fiar y cuales no. El segundo entorno es una cancha de baloncesto donde el agente deberá aprender a lanzar a canasta y reconocer con qué estados meteorológicos es viable jugar.
Resumo:
En la actualidad la información es uno de los elementos de mayor valor agregado, más cuando es expresión novedosa y útil que permite acelerar el proceso de toma de decisiones o aumentar el conocimiento sobre determinados elementos. Los volúmenes de información que se generan en forma permanente (por ej. en el ámbito hospitalario, experimento genómicos, epidimeológicos, etc.) están creciendo considerablemente. El análisis y procesos diagnósticos exitosos implican la utilización de un número cada vez mayor de variables a asociar. Por otra parte, el formato digital está reemplazando cada vez más el papel en todos los ambientes, desde el empresarial hasta el de salud, pasando indudablemente por el de los experimentos científicos, particularmente los experimentos genéticos. Estos procesos de recolección o generación de información producen volúmenes tales que superan las capacidades humanas para analizarlas. Esta limitación se debe a varios factores, entre los que podemos mencionar, la disponibilidad en tiempo y la incapacidad de relacionar grandes volúmenes con eventos y una gran cantidad de variables. Entonces ¿Qué hacer con toda la información disponible? ¿Cómo extraer conocimiento de dicha información? El Descubrimiento de Información en Bases de Datos (DIBD) y las técnicas de Minería de Datos (MD) (entre las que podemos mencionar aquellas provenientes del campo de la Inteligencia Artificial, tales como los modelos Neuronales Artificiales) son metodologías asociadas, tendientes a resolver los problemas de la extracción de información novel y útil sobre un conjunto de datos y/o señales biomédicas. Este proyecto trata sobre el desarrollo y aplicación de metodologías de análisis de datos para el descubrimiento de información en bases de datos biológicas y biomédicas, tendientes a mejorar y/o desarrollar nuevas técnicas de diagnóstico, como también para el análisis de señales e información biomédica.
Caracterización del Sistema Mal de Río Cuarto del maíz mediante minería de datos y análisis de redes
Resumo:
Extracción de conocimiento de los log generados por un servidor web aplicando técnicas de minería de datos.
Resumo:
Monográfico con el título: 'Adaptación y accesibilidad de las tecnologías para el aprendizaje'. Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Fil: Miguel, Sandra. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Miguel, Sandra. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Fil: Miguel, Sandra. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.