971 resultados para Mathematics(all)
Resumo:
Data coming out from various researches carried out over the last years in Italy on the problem of school dispersion in secondary school show that difficulty in studying mathematics is one of the most frequent reasons of discomfort reported by students. Nevertheless, it is definitely unrealistic to think we can do without such knowledge in today society: mathematics is largely taught in secondary school and it is not confined within technical-scientific courses only. It is reasonable to say that, although students may choose academic courses that are, apparently, far away from mathematics, all students will have to come to terms, sooner or later in their life, with this subject. Among the reasons of discomfort given by the study of mathematics, some mention the very nature of this subject and in particular the complex symbolic language through which it is expressed. In fact, mathematics is a multimodal system composed by oral and written verbal texts, symbol expressions, such as formulae and equations, figures and graphs. For this, the study of mathematics represents a real challenge to those who suffer from dyslexia: this is a constitutional condition limiting people performances in relation to the activities of reading and writing and, in particular, to the study of mathematical contents. Here the difficulties in working with verbal and symbolic codes entail, in turn, difficulties in the comprehension of texts from which to deduce operations that, once combined together, would lead to the problem final solution. Information technologies may support this learning disorder effectively. However, these tools have some implementation limits, restricting their use in the study of scientific subjects. Vocal synthesis word processors are currently used to compensate difficulties in reading within the area of classical studies, but they are not used within the area of mathematics. This is because the vocal synthesis (or we should say the screen reader supporting it) is not able to interpret all that is not textual, such as symbols, images and graphs. The DISMATH software, which is the subject of this project, would allow dyslexic users to read technical-scientific documents with the help of a vocal synthesis, to understand the spatial structure of formulae and matrixes, to write documents with a technical-scientific content in a format that is compatible with main scientific editors. The system uses LaTex, a text mathematic language, as mediation system. It is set up as LaTex editor, whose graphic interface, in line with main commercial products, offers some additional specific functions with the capability to support the needs of users who are not able to manage verbal and symbolic codes on their own. LaTex is translated in real time into a standard symbolic language and it is read by vocal synthesis in natural language, in order to increase, through the bimodal representation, the ability to process information. The understanding of the mathematic formula through its reading is made possible by the deconstruction of the formula itself and its “tree” representation, so allowing to identify the logical elements composing it. Users, even without knowing LaTex language, are able to write whatever scientific document they need: in fact the symbolic elements are recalled by proper menus and automatically translated by the software managing the correct syntax. The final aim of the project, therefore, is to implement an editor enabling dyslexic people (but not only them) to manage mathematic formulae effectively, through the integration of different software tools, so allowing a better teacher/learner interaction too.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
With the rapidly growing activities in electronic publishing ideas came up to install global repositories which deal with three mainstreams in this enterprise: storing the electronic material currently available, pursuing projects to solve the archiving problem for this material with the ambition to preserve the content in readable form for future generations, and to capture the printed literature in digital versions providing good access and search facilities for the readers. Long-term availability of published research articles in mathematics and easy access to them is a strong need for researchers working with mathematics. Hence in this domain some pioneering projects have been established addressing the above mentioned problems.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
The aim of this article is to present a Project in the Oporto’s Institute of Accounting and Administration, which pretends to contribute for a change in the way of teaching and learning Mathematics. One of the main objectives of this project is to innovate the teaching and learning processes, exploring technologies as a pedagogical resource and to induce higher motivation to students, improve the rate of success and make available to students a set of materials adapted to their needs. This concern is justified due to the fact that students have a weak preparation, without consolidated basis. Since the year 2007/2008 the courses were adjusted to the Bologna process, which requires several changes in teacher’s and student’s roles, methodologies and assessment. The number of weekly classes has been reduced, so it was necessary to develop new strategies and methodologies to support the student. With the implementation of the Bologna Process in the Accounting degree, we felt a great need to provide other types of activities to students. To complement our theoretical and practical classes we have developed a project called MatActiva based on the Moodle platform offered by PAOL - Projecto de Apoio On-Line (Online Support Project). Moodle allows us to use the language TEX to create materials that use mathematical symbols. Using this functionality, we created a set of easy to use interactive resources. In MatActiva project, the students have access to a variety of different materials. We have followed a strategy that makes the project compatible with the theoretical and practical subjects/classes, complementing them. To do so, we created some resources, for instance multiple-choice tests, which are the most accessed by the students. These tests can be realized and corrected on-line and for each wrong answer there is a feedback with the resolution. We can find other types of resources: diagnostic tests, theoretical notes. There are not only the pre-requirements for subjects mathematics, but also materials to help students follow up the programs. We also developed several lessons. This activity consists of a number of pages, where each page has contents and leads to other pages, based on the student's progress. The teacher creates the choices and determines the next page that the student will see, based upon their knowledge. There is also an area of doubts, where the students can place all the mathematical doubts they have, and a teacher gives the answers or clues to help them in their work. MatActiva also offers an area where we can find some humour, curiosities, contests and games including mathematical contents to test the math skills, as well as links to pages about mathematical contents that could be useful for the study. Since ISCAP receives ERASMUS students and some of them attend mathematics, we developed some materials in English, so they can also use MatActiva. The main objectives of our project are not only to bring success in the subjects of mathematics, but also to motivate the students, encourage them to overcome theirs difficulties through an auto-study giving them more confidence and improve their relationship with the mathematics as well as the communication between students and teachers and among students.
Resumo:
In this paper we will talk about a math project submitted to the Lifelong Learning Programme. European higher education needs a reform in order to play its full role in the Europe of Knowledge. Modernisation of higher education is necessary in the areas of curricula (Bologna process), funding and governance so that higher education institutions can face the challenges posed by globalisation and contribute more effectively to the training and retraining of the European workforce. On the other hand Mathematics is an essential component of all educational systems. Mathematical literacy is being scrutinized in assessment efforts such as the OCDE Programme for International Student Assessment (PISA). This showed a low level in Europe. Due to the Bologna Process, which brought several didactical implications for Higher Education (HE) institutions, there is the need of lifelong learning. This evolution is in conflict with the earlier mentioned lack of competencies on basic sciences, such as Mathematics. Forced by this duality, efforts are combined to share expertise in the Math field and the integration of pedagogical methodologies becomes a necessity. Thus, several European countries have proposed an International Project to the Lifelong Learning Programme, Action ERASMUS Modernisation of Higher Education, to make institutions more attractive and more responsive to the needs of the labour market, citizens and society at large. One of the main goals of the project is to attract students to math through high-quality instructional units in an understandable, exciting and attractive way.
Resumo:
In the hustle and bustle of daily life, how often do we stop to pay attention to the tiny details around us, some of them right beneath our feet? Such is the case of interesting decorative patterns that can be found in squares and sidewalks beautified by the traditional Portuguese pavement. Its most common colors are the black and the white of the basalt and the limestone used; the result is a large variety and richness in patterns. No doubt, it is worth devoting some of our time enjoying the lovely Portuguese pavement, a true worldwide attraction. The interesting patterns found on the Azorean handicrafts are as fascinating and substantial from the cultural point of view. Patterns existing in the sidewalks and crafts can be studied from the mathematical point of view, thus allowing a thorough and rigorous cataloguing of such heritage. The mathematical classification is based on the concept of symmetry, a unifying principle of geometry. Symmetry is a unique tool for helping us relate things that at first glance may appear to have no common ground at all. By interlacing different fields of endeavor, the mathematical approach to sidewalks and crafts is particularly interesting, and an excellent source of inspiration for the development of highly motivated recreational activities. This text is an invitation to visit the nine islands of the Azores and to identify a wide range of patterns, namely rosettes and friezes, by getting to know different arts and crafts and sidewalks.
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
This article offers a panorama of mathematics training for future teachers at pre-school level in Spain. With this goal in mind, this article is structured infour sections: where we come from, where we are, where we’re going and where we want to go. It offers, in short, a brief analysis that shows the efforts made to ensure there is sufficient academic and scientific rigour in teachers’ studies at pre-school in general and students’ mathematics education in particular. Together with a description of the progress made in recent years, it also raises some questions for all those involved in training future teachers for this educational stage
Resumo:
The purpose of this study was to determine the effect that calculators have on the attitudes and numerical problem-solving skills of primary students. The sample used for this research was one of convenience. The sample consisted of two grade 3 classes within the York Region District School Board. The students in the experimental group used calculators for this problem-solving unit. The students in the control group completed the same numerical problem-solving unit without the use of calculators. The pretest-posttest control group design was used for this study. All students involved in this study completed a computational pretest and an attitude pretest. At the end of the study, the students completed a computational posttest. Five students from the experimental group and five students from the control group received their posttests in the form of a taped interview. At the end of the unit, all students completed the attitude scale that they had received before the numerical problem-solving unit once again. Data for qualitative analysis included anecdotal observations, journal entries, and transcribed interviews. The constant comparative method was used to analyze the qualitative data. A t test was also performed on the data to determine whether there were changes in test and attitude scores between the control and experimental group. Overall, the findings of this study support the hypothesis that calculators improve the attitudes of primary students toward mathematics. Also, there is some evidence to suggest that calculators improve the computational skills of grade 3 students.
Resumo:
This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
ABSTRACT In the first two seminars we looked at the evolution of Ontologies from the current OWL level towards more powerful/expressive models and the corresponding hierarchy of Logics that underpin every stage of this evolution. We examined this in the more general context of the general evolution of the Web as a mathematical (directed and weighed) graph and the archetypical “living network” In the third seminar we will analyze further some of the startling properties that the Web has as a graph/network and which it shares with an array of “real-life” networks as well as some key elements of the mathematics (probability, statistics and graph theory) that underpin all this. No mathematical prerequisites are assumed or required. We will outline some directions that current (2005-now) research is taking and conclude with some illustrations/examples from ongoing research and applications that show great promise.