971 resultados para Mast cell tumors
Resumo:
Twenty-nine canine cutaneous mast cell tumors (MCTs) were morphometrically analyzed with regard to mean nuclear area (MNA) using cytopathology smears. The results showed a correlation between MNA and survival. When graded into 2 morphometrically different groups, there were statistically significant differences among high- and low-grade MCTs, regarding both Romanowsky-type stain and hematoxylin and eosin. Cytomorphometry could also separate histologic grade II tumors with better prognosis from the more aggressive MCTs. The results indicated that nuclear morphometry on cytopathology preparations can predict the biological behavior of cutaneous MCTs in dogs in an independent manner, yielding a rapid and reproducible diagnosis, which renders the method useful for veterinary oncology.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect the skin and soft tissue of dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. While retinoids are well recognized as promising antitumor agents, there have been only a few reports about retinoids` effect on canine cancers. The aim of this study was to investigate the chemosensitivity of MCT grades II and III to all-trans retinoic acid (ATRA). Immediately after surgical resection, MCT were prepared for primary culture. Samples of MCTs were also fixed in formalin for histopathology and grading according to the classification of Patnaik et al. (Veterinary Pathology 21(5):469-474, 1984). The best results were obtained when neoplastic mast cells were co-cultivated with fibroblasts. Cultured mast cells were, then, treated with concentrations of 10(-4) to 10(-7) M of ATRA, in order to evaluate their chemosensitivity to this retinoid. MTT assay was performed to estimate cell growth and death. The highest level of mast cell chemosensivity was obtained at the dose of 10(-4) M (p < 0,002). MCT of grades II or III were equally susceptible to the treatment with ATRA. Cell death was observed on the first 24 h until 48 h. According to these results, ATRA may be a potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Molecular assays are widely used to prognosticate canine cutaneous mast cell tumors (MCT). There is limited information about these prognostic assays used on MCT that arise in the subcutis. The aims of this study were to evaluate the utility of KIT immunohistochemical labeling pattern, c-KIT mutational status (presence of internal tandem duplications in exon 11), and proliferation markers-including mitotic index, Ki67, and argyrophilic nucleolar organizing regions (AgNOR)-as independent prognostic markers for local recurrence and/or metastasis in canine subcutaneous MCT. A case-control design was used to analyze 60 subcutaneous MCT from 60 dogs, consisting of 24 dogs with subsequent local recurrence and 12 dogs with metastasis, as compared to dogs matched by breed, age, and sex with subcutaneous MCT that did not experience these events. Mitotic index, Ki67, the combination of Ki67 and AgNOR, and KIT cellular localization pattern were significantly associated with local recurrence and metastasis, thereby demonstrating their prognostic value for subcutaneous MCT. No internal tandem duplication mutations were detected in exon 11 of c-KIT in any tumors. Because c-KIT mutations have been demonstrated in only 20 to 30% of cutaneous MCT and primarily in tumors of higher grade, the number of subcutaneous MCT analyzed in this study may be insufficient to draw conclusions on the role c-KIT mutations in these tumors.
Resumo:
Thirty fine-needle biopsy (FNB) samples from 28 dogs subjected to surgical resection of cutaneous mast cell tumors (MCTs) were stained with Giemsa. At least 100 neoplastic cells from each cytology slide were evaluated by morphometric analysis. The parameters were: area, perimeter of the cell, cytoplasm, nucleus and circumference factor. MCTs of grade III had a mean cellular area of 231.70 μm2 ± 57.1, and grade II had a mean of 252.30 μm2 ± 55.0. Cellular perimeter was 61.20 ± 7.1 in grade II and 59.1 ± 8.6 in grade III. Cellular parameters were not statistically different between grades (p>.05). Mean nuclear area was 88.90 μm2 ± 19 in grade III and 72.30 μm2 ± 13.9 in grade II, with statistical difference between grades (P =.011). Mean nuclear perimeter was 32.40 ìm ± 3.0 in grade II and 35.70 ìm ± 4.0 in grade III, with statistical difference between grades (P =.018). Mean nuclear circumference factor was 1.0 ± 0.33 in grade II and 1.1 ± 0.28 in grade III, with no statistical difference between grades (P = 0.78). Nuclear-tocytoplasmic ratio in grade II was 0.29 ±.07 and 0.39 ±.08 in grade III, with statistical difference (P =.02). The number of binucleated and multinucleated cells and mitotic figures was significantly increased in grade III MCTs (P <.001). In conclusion, the number of mitotic figures, presence of binucleation and multinucleation, and nuclear-to-cytoplasmic ratio can help to guide a profile of MCT aggressiveness in cytologic preparations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mast cell tumors (MCTs) are the most frequent round cell tumors in dogs and comprise approximately 21% of all canine cutaneous tumors. MCTs are highly invasive and metastatic corresponding to the histological grade. E-cadherin is an adhesion molecule expressed in epithelial cells and although it is an epithelial cellular marker, studies have shown expression of E-cadherin in canine round cell tumors. To better characterize the expression pattern of E-cadherin in several different histological grades of MCTs in dogs, the expression and localization of the adhesion molecule was investigated using immunohistochemistry. For this purpose, 18 cutaneous MCTs were classified into three histological grades, 1, 2 or 3. Clinical history and follow-up data were available for all of the dogs. Cytoplasmic and nuclear expressions of E-cadherin in all three types of tumors were verified by immunostaining using two different antibodies. There was decreased E-cadherin expression in the more aggressive MCTs (Grade 3), suggesting an association between E-cadherin and tumor aggressiveness. Additionally, the loss of E-cadherin expression in either the cytoplasm or nucleus in more aggressive and undifferentiated tumor types confirmed the importance of cellular adhesion in tumor behavior. (C) 2012 Published by Elsevier Ltd.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect skin and soft tissue in dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. Trichostatin A (TSA), an antifungal antibiotic, has shown inhibitory effects on the proliferation and induction of apoptosis in various types of cancer cells. In order to evaluate the potential of trichostatin A as a therapeutic drug, cells of grade 3 MCT were cultured and treated with concentrations of 1 nM to 400 nM of TSA. MTT assay and trypan blue exclusion assays were performed to estimate cell growth and cell viability, and cell cycle analysis was evaluated. TSA treatment showed a reduction in numbers of viable cells and an increase of cell death by apoptosis. The cell cycle analysis showed an increase of hypodiploid cells and a reduction of G0/G1 and G2/M -phases. According to these results, trichostatin A may be an interesting potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
BACKGROUND: Mast cell tumor, one of the most common skin tumors in dogs, may also be found in visceral sites (mainly spleen and liver). When a visceral mast cell tumor is present, neoplastic mast cells may be found in any effusion secondary to the tumor. Therefore, the diagnosis may be made by cytologic analysis of the effusion. CASE: An 8-year-old, spayed, female Siberian husky presented with a peritoneal effusion secondary to a visceral mast cell tumor. Seven months earlier, the dog had presented with a cutaneous nodule diagnosed as a well-differentiated mast cell tumor. The peritoneal fluid was classified as a transudate. Numerous neoplastic mast cells were found in the effusion. Although the mast cell tumor presented with characteristics of the well-differentiated tumor, its biologic behavior was that of a malignant tumor. CONCLUSION: Care should be taken to evaluate the prognosis of mast cell tumors in dogs since their biologic behavior is extremely variable.
Resumo:
Mast cell tumor manifests as a localized proliferation of mast cells in the skin, or less frequently as a systemic disorder, which may be accompanied by the presence of neoplastic mast cells in the peripheral blood (mastocythemia). In some cases, the neoplastic circulating mast cells originate in the bone marrow, designated as mast cell leukemia, rarely observed in dogs, or the cells may arise from visceral mast cell tumors, characterizing systemic mastocytosis. The aim of this report was to describe a case of a six-year-old female German shepherd dog presenting with history of anorexia, hematemesis and diarrhea. The blood work revealed intense mastocythemia (43%), with degranulated mast cells, and anisocytosis. At necropsy, white nodular lesions in the thymic region and an infiltrative mass in mesenteric and abdominal lymph nodes were observed. Those lymph nodes were enlarged and off-white. Histopathological examination revealed neoplastic mast cells in the liver, spleen, lymph nodes, kidneys, lungs, gastric and enteric mucosae, and adrenal glands. The clinical, hematological and histopathological findings were compatible with mastocythemia, associated with a moderately differentiated visceral mast cell tumor.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tumor cells are surrounded by infiltrating inflammatory cells, such as lymphocytes, neutrophils, macrophages, and mast cells. A body of evidence indicates that mast cells are associated with various types of tumors. Although role of mast cells can be directly related to their granule content, their function in angiogenesis and tumor progression remains obscure. This study aims to understand the role of mast cells in these processes. Tumors were chemically induced in BALB/c mice and tumor progression was divided into Phases I, II and III. Phase I tumors exhibited a large number of mast cells, which increased in phase II and remained unchanged in phase III. The expression of mouse mast cell protease (mMCP)-4, mMCP-5, mMCP-6, mMCP-7, and carboxypeptidase A were analyzed at the 3 stages. Our results show that with the exception of mMCP-4 expression of these mast cell chymase (mMCP-5), tryptases (mMCP-6 and 7), and carboxypeptidase A (mMC-CPA) increased during tumor progression. Chymase and tryptase activity increased at all stages of tumor progression whereas the number of mast cells remained constant from phase II to III. The number of new blood vessels increased significantly in phase I, while in phases II and III an enlargement of existing blood vessels occurred. In vitro, mMCP-6 and 7 are able to induce vessel formation. The present study suggests that mast cells are involved in induction of angiogenesis in the early stages of tumor development and in modulating blood vessel growth in the later stages of tumor progression.
Resumo:
Abstract Background In this study the effect of myenteric denervation induced by benzalconium chloride (BAC) on distribution of fibrillar components of extracellular matrix (ECM) and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rats were divided in four experimental groups: non-denervated (I) and denervated stomach (II) without MNNG treatment; non-denervated (III) and denervated stomachs (IV) treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF). Results BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II) compared to the non-denervated stomachs (group I). The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively) with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV) compared to the non-denervated stomachs (group III) that showed degradation of these fibers. The development of lesions (groups III and IV) was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV. Conclusions The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes to understanding of tumor biology by action of myenteric denervation.