969 resultados para Marius, Gaius, approximately 157 B.C.-86 B.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Frontispiece of volume 2 is portrait of Janus Dousa.
Resumo:
Vol. 2 cite as: P.Col. IV
Resumo:
We present a search for direct CP violation in B±→J/ ψK±(π±) decays. The event sample is selected from 2.8fb-1 of pp̄ collisions recorded by D0 experiment in run II of the Fermilab Tevatron Collider. The charge asymmetry ACP(B+→J/ψK+)=+0.0075±0. 0061(stat)±0.0030(syst) is obtained using a sample of approximately 40000 B±→J/ψK± decays. The achieved precision is of the same level as the expected deviation predicted by some extensions of the standard model. We also measured the charge asymmetry ACP(B+→J/ψπ+)=-0. 09±0.08(stat)±0.03(syst). © 2008 The American Physical Society.
Resumo:
The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in d11B (11-16 per mil) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of d11B values (9-10 per mil), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.
Resumo:
Mode of access: Internet.
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
The paper presents studies of Bose--Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range pT> 100 MeV and |η|< 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 μb−1, 190 μb−1 and 12.4 nb−1 for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.
Resumo:
Forty-two new apatite and zircon fission track ages are presented for samples from the Western Alps in southern Switzerland, northern Italy, and southeastern France. Measured ages plotted against assumed closure temperatures yield cooling patterns for the final cooling, uplift, and exhumation of the Western Alps. Similar fission track zircon ages in the Penninic Gran Paradiso massif, Dent Blanche nappe, Sesia-Lanzo Zone, and Ivrea Zone indicate cooling of all four units to approximately 225-degrees-C by 33 Ma. Differences in apatite ages reveal differential cooling of the four blocks between 33 Ma and the present. In the Sesia-Lanzo Zone, similarity of apatite ages regardless of elevation, together with near-volcanic confined fission track length patterns suggest rapid cooling and uplift at approximately 25 Ma compared with slow cooling of other Western Alps units around 12 Ma. Uplift is thus not continuous but episodic, often over a short time interval beyond the resolution of other methods. Such episodes of uplift, as revealed here in the Sesia-Lanzo Zone, may be the rule rather than the exception.
Resumo:
To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of alpha/beta-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65 degrees C and 100 to 500 MPa) and applied to wild-type and SASP-alpha(-/)beta(-) Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65 degrees C, On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65 degrees C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65 degrees C inactivated wild-type SASP-alpha(+)/beta(+) spores more than mutant SASP-alpha(-)/beta(-) spores, and this was attributed to less pressure-induced germination in SASP-alpha(-)/beta(-) spores than in wild-type SASP-alpha(+)/beta(+) spores. However, there was no difference in the pressure resistance between SASP-alpha(+)/beta(+) and SASP-alpha(-)/beta(-) spores at 100 MPa and ambient temperature (approximately 22 degrees C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that alpha/beta-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.
Resumo:
The ground pods of mesquite (GPM) was submitted to different thermal treatments for two hours after wanted temperature stabilization, for making of the treatments: A = ground pods of mesquite without heat treatment (approximately 30 degrees C); B = The ground pods of mesquite treated at 60 degrees C; C = The ground pods of mesquite treated at 80 degrees C; D = The ground pods of mesquite treated at 100 degrees C and E = The ground pods of mesquite treated at 120 degrees C. Soon after, samples were collected for accomplishment for chemical analyses and in vitro digestibility. A completely randomized design with three replications was utilized. The DM, CP, NFE, CF, ADF, celluloses, lignin, ash and CE values, did not were affected (P>0.05) by temperature. It was observed a quadratic effect (P<0.01) on the contents of EE, decreasing linear effect (P<0.01) on the CC and increasing linear effect on the NDF (P<0.01) and Hemicellulose (P<0.05) contents. The in vitro dry matter digestibility and the in vitro organic matter digestibility were not affected (P>0.05) by temperature. on the other hand the in vitro protein digestibility level, showed a quadratic effect (P<0.05), decreasing after 54 degrees C.