976 resultados para MYCN-AMPLIFICATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: MYCN oncogene amplification has been defined as the most important prognostic factor for neuroblastoma (NB), the most common solid extracranial neoplasm in children. High copy numbers are strongly associated with rapid tumor progression and poor outcome, independently of tumor stage or patient age, and this has become an important factor in treatment stratification. PROCEDURE: By real-time quantitative PCR analysis, we evaluated the clinical relevance of circulating MYCN DNA of 267 patients with locoregional or metastatic NB in children less than 18 months of age. RESULTS: For patients in this age group with INSS stage 4 or 4S NB and stage 3 patients, serum-based determination of MYCN DNA sequences had good sensitivity (85%, 83%, and 75% respectively) and high specificity (100%) when compared to direct tumor gene determination. In contrast, the approach showed low sensitivity patients with stages 1 and 2 disease. CONCLUSION: Our results show that the sensitivity of the serum-based MYCN DNA sequence determination depends on the stage of the disease. However, this simple, reproducible assay may represent a reasonably sensitive and very specific tool to assess tumor MYCN status in cases with stage 3 and metastatic disease for whom a wait and see strategy is often recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The prognostic impact of segmental chromosome alterations (SCAs) in children older than 1 year, diagnosed with localised unresectable neuroblastoma (NB) without MYCN amplification enrolled in the European Unresectable Neuroblastoma (EUNB) protocol is still to be clarified, while, for other group of patients, the presence of SCAs is associated with poor prognosis. METHODS: To understand the role of SCAs we performed multilocus/pangenomic analysis of 98 tumour samples from patients enrolled in the EUNB protocol. RESULTS: Age at diagnosis was categorised into two groups using 18 months as the age cutoff. Significant difference in the presence of SCAs was seen in tumours of patients between 12 and 18 months and over 18 months of age at diagnosis, respectively (P=0.04). A significant correlation (P=0.03) was observed between number of SCAs per tumour and age. Event-free (EFS) and overall survival (OS) were calculated in both age groups, according to both the presence and number of SCAs. In older patients, a poorer survival was associated with the presence of SCAs (EFS=46% vs 75%, P=0.023; OS=66.8% vs 100%, P=0.003). Moreover, OS of older patients inversely correlated with number of SCAs (P=0.002). Finally, SCAs provided additional prognostic information beyond histoprognosis, as their presence was associated with poorer OS in patients over 18 months with unfavourable International Neuroblastoma Pathology Classification (INPC) histopathology (P=0.018). CONCLUSIONS: The presence of SCAs is a negative prognostic marker that impairs outcome of patients over the age of 18 months with localised unresectable NB without MYCN amplification, especially when more than one SCA is present. Moreover, in older patients with unfavourable INPC tumour histoprognosis, the presence of SCAs significantly affects OS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amplification of the MYCN gene in neuroblastomas is a potent biological marker of highly aggressive tumors, which are invariably fatal unless sound clinical management is applied. To determine the usefulness of semi-quantitative differential PCR (SQ-PCR) for accurate quantification of MYCN gene copy number, we evaluated the analytical performance of this method by comparing the results obtained with it for 101 tumor samples of neuroblastoma to that obtained by absolute and relative real-time PCR. Similar results were obtained for 100 (99%) samples, no significant difference was detected between the median log10 MYCN copy number (1.53 by SQ-PCR versus 1.55 by absolute real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). In the comparison of SQ-PCR and relative real-time PCR, SQ-PCR versus relative real-time PCR concordant results were found in 100 (99%) samples, no significant difference was found in median log10 MYCN copy number (1.53 by SQ-PCR versus 1.27 by relative real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). These findings indicate that the performance of SQ-PCR was comparable to that of real-time PCR for the amplification and quantification of MYCN copy number. Thus, SQ-PCR can be reliably used as an alternative assay in laboratories without facilities for real-time PCR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Neuroblastoma is the most deadly solid tumor of childhood. In the 25% of cases it is associated with MYCN amplification (MA), resulting in the disregulation of several genes involved in cancer progression, chemotherapy resistance and poor prognosis causing the disregulation of several genes involved in cancer progression and chemotherapy resistance and resulting in a poor prognosis. Moreover, in this contest, therapy-related p53 mutations are frequently found in relapsed cases conferring an even stronger aggressiveness. For this reason, the actual therapy requires new antitumor molecules. Therefore, rapid, accurate, and reproducible preclinical models are needed to evaluate the evolution of the different subtypes and the efficacy of new pharmacological strategies. Procedures. We report the real-time tumorigenesis of MA Neuroblastoma mouse models: transgenic TH-MYCN mice and orthotopic xenograft models with either p53wt or p53mut, by non-invasive micro PET and bioluminescent imaging, respectively. Characterization of MYCN amplification and expression was performed on every collected sample. We tested the efficacy of a new MYCN inhibitor in vitro and in vivo. Results. MicroPET in TH-MYCN mice permitted the identification of Neuroblastoma at an early stage and offered a sensitive method to follow metabolic progression of tumors. The MA orthotopic model harboring multitherapy-related p53 mutations showed a shorter latency and progression and a stronger aggressiveness respect to the p53wt model. The presence of MA and overexpression was confirmed in each model and we saw a better survival in the TH-MYCN homozigous mice treated with the inhibitor. Conclusions. The mouse models obtained show characteristics of non-invasiveness, rapidity and sensitivity that make them suitable for the in vivo preclinical study of MA-NB. In particular, our firstly reported p53mut BLI xenograft orthotopic mouse model offers the possibility to evaluate the role of multitherapy-related p53 mutations and to validate new p53 independent therapies for this highly aggressive Neuroblastoma subtype. Moreover, we have shown potential clinical suitability of an antigene strategy through its cellular and molecular activity, ability to specifically inhibit transcription and in vivo efficacy with no evidence of toxicity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neuroblastoma (NB) is the deadliest cancer in early childhood. Around 25% of patients pre- sent MYCN-amplification (MNA) which is linked to poor prognosis, metastasis, and therapy- resistance. While retinoic acid (RA) is beneficial only for some NB patients, the cause of its resistance is still unknown. Thus, there remains a need for new therapies to treat NB. I show that MYCN-specific inhibition by the antigene oligonucleotide BGA002 in combination with 13-cis RA (BGA002-RA) overcome resistance in MNA-NB cell lines, leading to potent MYCN mRNA expression and protein decrease. Moreover, BGA002-RA reactivated neuron differentiation or led to apoptosis in MNA-NB cell lines, and inhibited invasiveness capacity. Since NB and PI3K/mTOR pathway are strictly related MYCN down-regulation by BGA002 led to mTOR pathway inhibition in MNA-NB, that was strengthened by BGA002-RA. I further analyzed if MYCN silencing may induce autophagy reactivation, and indeed BGA002-RA caused a massive increase in lysosomes and macrovacuoles in MNA-NB cells. In addition, while MYCN is known to induce angiogenesis, BGA002-RA in vivo treatment elim- inated the tumor vascularization in a MNA-NB mice model, and significantly increased the survival. Overall, these results indicate that MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, we show a cancer-specific way of mTOR pathway inhibition only in MNA-NB, avoiding side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a potential strategy to overcome RA resistance in MNA-NB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is the most aggressive form of lung cancer, characterized by rapid growth, early metastasis and acquired drug resistance. SCLC is usually sensitive to initial treatment, however, most patients relapse within few months; thus more effective therapies are urgently needed. Key genetic alterations very frequently observed in SCLC include loss of TP53 and RB1 and mutations in the MYC family genes (MYC, MYCL or MYCN). One of them is amplified and overexpressed in a mutually exclusive manner and represents the most prominent activating oncogene alteration in this malignancy. In particular, MYCN amplification is associated with tumor progression, treatment failure and poor prognosis. Given the role of MYCN in SCLC and its restricted expression profile, MYCN represents a promising therapeutic target; although it is considered undruggable by traditional approaches. An innovative approach to target the oncogene concerns specific MYCN expression inhibition, acting directly at the level of DNA, through an antigene peptide nucleic acid (agPNA) oligonucleotide, called BGA002. This thesis focused on the study of BGA002, as a possible targeted therapeutic strategy for the treatment of MYCN-related SCLC. In this context, BGA002 proved to be a specific and highly effective inhibitor. Furthermore, MYCN silencing induced alterations in many downstream pathways and led to apoptosis, in concomitance with autophagy reactivation. Moreover, systemic administration of BGA002 was effective in vivo as well, significantly increasing survival in MNA mouse models, even in the scenario of multidrug-resistance. In addition, BGA002 treatment successfully reduced N-Myc protein expression and, more importantly, caused a massive diminishment in tumor vascularization in the multidrug-resistant model. Overall, these results proved that MYCN inhibition by BGA002 may represent a new promising precision medicine approach, to treat MYCN-related SCLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLXL. Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of reviewMedulloblastomas are very rare in adults. Usual treatment consists of craniospinal radiation with or without chemotherapy. Current efforts focus on a better understanding of tumour biology, stratifying patients into risk groups and adapting treatment accordingly. This review discusses clinical and new molecular risk factors that will help to optimize treatment in adult medulloblastoma patients.Recent findingsThe clinical risk stratification should be complemented with new molecular prognostic markers. Gene-expression profiling has permitted identification of four to six molecular medulloblastoma subgroups. The WNT subgroup shows overexpression of genes of the WNT/wingless signalling pathway with frequent mutations of the CNNTB1 gene, loss of chromosome 6 and accumulation of nuclear beta-catenin, and is most often seen in children with medulloblastomas of classical histology. This variant has a good prognosis. Activation of the sonic hedgehog pathway with frequent mutations of the PTCH and SUFU genes, loss of 9q, and positivity for GLI1 and SFRP1 is more frequent in children less than 3 years old and in adults, commonly associated with desmoplastic histology. Other subgroups are not so well defined and have overlapping characteristics, but MYC/MYCN amplification, 17q gain and, large cell/anaplastic histology are factors of poor prognosis.SummaryNew molecular subgroups will help tailor treatment and further develop new targeted therapies. Prospective and ideally randomized trials should be performed in adults, including risk stratification by molecular markers, to identify optimal treatment for each risk group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The HR-NBL1 Study of the European SIOP Neuroblastoma Group (SIOPEN) randomised two high dose regimens to learn about potential superiority and toxicity profiles.Patients and Methods: At interim analysis 1483 high risk neuroblastoma patients (893 males) were included since 2002 with either INSS stage 4 disease (1383 pts) above 1 year, or as infants (59 pts) and stage 2&3 of any age (145 pts) with MYCN amplification. The median age at diagnosis was 2.9 years (1 month-19.9 years) with a median follow up of 3 years. Response eligibility criteria prior randomisation after Rapid Cojec Induction (J Clin Oncol, 2010) ± 2 courses of TVD (Cancer, 2003) included complete bone marrow remission and at least partial response at skeletal sites with no more than 3, but improved mIBG positive spots and a PBSC harvest of at least 3x10E6 CD34/kgBW. The randomised regimens were BuMel [busulfan oral till 2006, 4x150mg/m² in 4 ED; or intravenous use according to body weight as licenced thereafter; melphalan 140mg/m²/day) and CEM [carboplatinum ctn. infusion (4x AUC 4.1mg/ml.min/day, etoposid ctn. infusion (4x 338mg/m²/day or [4x 200mg/m²/day]*, melphalan (3x70mg/m²/day; 3x60mg/m²/day*;*reduced dosis if GFR< 100ml/min/1.73m²). Supportive care followed institutional guidelines. VOD prophylaxis included ursadiol, but randomised patients were not eligible for the prophylactic defibrotide trial. Local control included surgery and radiotherapy of 21Gy.Results: Of 1483 patients, 584 were being randomised for the high dose question at data lock. A significant difference in event free survival (3-year EFS 49% vs. 33%, p<0.001) and overall survival (3-year OS 61% vs. 48%, p=0.003) favouring the BuMel regimen over the CEM regimen was demonstrated. The relapse/progression rate was significantly higher after CEM (0.60±0.03) than after BuMel (0.48±0.03)(p<0.001). Toxicity data had reached 80% completeness at last analysis. The severe toxicity rate up to day 100 (ICU and toxic deaths) was below 10%, but was significantly higher for CEM (p= 0.014). The acute toxic death rate was 3% for BuMel and 5% for CEM (NS). The acute HDT toxicity profile favours the BuMel regimen in spite of a total VOD incidence of 18% (grade 3:5%).Conclusions: The Peto rule of P<0.001 at interim analysis on the primary endpoint, EFS was met. Hence randomization was stopped with BuMel as recommended standard treatment in the HR-NBl1/SIOPEN trial which is still accruing for the randomised immunotherapy question.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le neuroblastome (NB) représente 8% de tous les cancers pédiatriques et est caractérisé par sa grande hétérogénéité clinique. Afin d’évaluer son pronostic, plusieurs facteurs génétiques sont utilisés : amplification de MYCN, délétion 1p, gain 11q et gain 17q. Les buts de notre travail étaient d’abord de vérifier si l’hybridation in situ en fluorescence (FISH) permet une analyse complète de ces anomalies et ensuite, en utilisant une analyse globale du génome telle le polymorphisme nucléotidique simple (SNP), de vérifier la concordance avec les résultats de la FISH et le pronostic potentiel des anomalies du 14q, en particulier du gène AKT. Nous avons donc établi un panel de sondes pour la FISH qui a été appliqué sur 16 tumeurs non-fixées. Après isolation de l’ADN de 36 tumeurs, nous avons effectué une analyse génotypique par SNP utilisant les puces « Affymetrix Genome-Wide Human SNP Array 6.0 » contenant 945,826 sondes non polymorphiques et 906,000 sondes polymorphiques. Nos résultats ont démontré que la FISH permet l’évaluation complète des anomalies génétiques importantes du NB et que les anomalies déséquilibrées sont détectées très précisément par SNP. Les anomalies du 14q tendent à être associées avec des facteurs cliniques comme le grade et l’évolution, contrairement aux anomalies d’AKT. L’analyse du 14q a révélé trois gènes d’intérêt, MAX, BCL11B et GPHN, qui devraient être analysés sur un plus grand échantillon. Ainsi, l’étude par FISH semble adaptée pour détecter les anomalies génétiques classiques du NB, alors que celles retrouvées en 14q représentent de potentielles cibles thérapeutiques pour cette tumeur.