955 resultados para MUSCLE-FIBER CHARACTERISTICS
Resumo:
G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology
Resumo:
We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002), in serial sarcomere number (23 ± 15%) and in cross-sectional area of the fibers (37 ± 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.
Resumo:
The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 ± 6%), length (19 ± 7%), serial sarcomere number (23 ± 15%), and fiber area (37 ± 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 ± 2%), serial sarcomere number (4 ± 4%), and fiber area (16 ± 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.
Resumo:
Size changes in muscle fibers of subjects with chronic heart disease (CHD) have been reported, although a consensus has not been achieved. The aims of the present study were to investigate a possible association between CHD and fiber size changes in the brachial biceps compared to subjects without heart disease. Forty-six muscle samples were obtained in autopsies of individuals (13 to 84 years) without neuromuscular disorders, 19 (10 males and 9 females) with, and 27 (14 males and 13 females) without CHD. In all cases muscle sections were stained with hematoxylin and eosin and processed for the visualization of myofibrillar ATPase activity. The lesser diameter of type 1 and type 2 fibers was obtained tracing their outlines (at least 150 fibers of each type per sample) onto an image analyzer connected to a computer. The results were analyzed statistically comparing males and females with and without CHD. Type 1 fiber mean lesser diameters were 51.51 and 54.52 µm in males (normal range 34-71 µm) and 45.65 and 55.42 µm in females (normal range 34-65 µm) without and with CHD, respectively; type 2 fibers measured 54.31, 58.23, 41.15, and 49.57 µm, respectively (normal range 36-79 µm for males and 32-59 µm for females). No significant difference in fiber size was detected in 24 males with and without CHD, while in 22 females there was a significant increase in size in those with cardiomyopathy. We concluded that CHD does not determine significant changes in fiber size. However, in females, there is some hypertrophy which, despite within normal range, may reflect morphologic heterogeneity of the sample, or the daily life activities in the upper limbs as a compensatory mechanism to fatigability that affect predominantly the lower limbs in subjects with CHD.
Resumo:
This document could not have been completed without the hard work of a number of individuals. First and foremost, my supervisor, Dr. David Gabriel deserves the utmost recognition for the immense effort and time spent guiding the production of this document through the various stages of completion. Also, aiding in the data collection, technical support, and general thought processing were Lab Technician Greig Inglis and fellow members of the Electromyographic Kinesiology Laboratory Jon Howard, Sean Lenhardt, Lara Robbins, and Corrine Davies-Schinkel. The input of Drs. Ted Clancy, Phil Sullivan and external examiner Dr. Anita Christie, all members ofthe assessment committee, was incredibly important and vital to the completion of this work. Their expertise provided a strong source of knowledge and went to ensure that this project was completed at exemplary level. There were a number of other individuals who were an immense help in getting this project off the ground and completed. The donation of their time and efforts was very generous and much needed in order to fulfill the requirements needed for completion of this study. Finally, I cannot exclude the contributions of my family throughout this project especially that of my parents whose support never wavers.
Resumo:
MuRF1 is a member of the RBCC (RING, B-box, coiled-coil) superfamily that has been proposed to act as an atrogin during muscle wasting. Here, we show that MuRF1 is preferentially induced in type-II muscle fibers after denervation. Fourteen days after denervation, MuRF1 protein was further elevated but remained preferentially expressed in type-II muscle fibers. Consistent with a fiber-type dependent function of MuRF1, the tibialis anterior muscle (rich in type-II muscle fibers) was considerably more protected in MuRF1-KO mice from muscle wasting when compared to soleus muscle with mixed fiber-types. We also determined fiber-type distributions in MuRF1/MuRF2 double-deficient KO (dKO) mice, because MuRF2 is a close homolog of MuRF1. MuRF1/MuRF2 dKO mice showed a profound loss of type-II fibers in soleus muscle. As a potential mechanism we identified the interaction of MuRF1/MuRF2 with myozenin-1, a calcineurin/NFAT regulator and a factor required for maintenance of type-II muscle fibers. MuRF1/MuRF2 dKO mice had lost myozenin-1 expression in tibialis anterior muscle, implicating MuRF1/MuRF2 as regulators of the calcineurin/NFAT pathway. In summary, our data suggest that expression of MuRF1 is required for remodeling of type-II fibers under pathophysiological stress states, whereas MuRF1 and MuRF2 together are required for maintenance of type-II fibers, possibly via the regulation of myozenin-1. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Avaliou-se a influência dos níveis nutricionais da ovelha antes do parto, da idade à desmama e do sistema de terminação sobre as fibras musculares e a qualidade da carne dos cordeiros. Utilizaram-se matrizes mestiças Ile de France × Bergamacia criadas a pasto. As ovelhas foram divididas em dois grupos: um com suplementação alimentar 30 dias antes do parto e outro sem suplementação. Os animais (ovelha e cordeiros) foram subdivididos de acordo com a idade à desmama (45 ou 60 dias de idade) e os cordeiros desmamados foram submetidos a três sistemas de terminação: confinamento com dieta completa; confinamento somente com feno; e confinamento somente no pasto. O abate dos cordeiros foi realizado aos 30 kg de peso vivo ou aos 150 dias de idade. As características de carcaça analisadas foram morfofisiologia da fibra do músculo longissimus dorsi, fragmentação miofibrilar pós-morte (maturados nos dias 0, 3 e 7 pos mortem) e redução do pH e da temperatura da carne pós-abate. Não houve efeito da suplementação às ovelhas ou da idade à desmama sobre nenhuma das características avaliadas. A composição em fibras de contração lenta e oxidativa, contração rápida e oxidativa ou contração rápida e glicolítica não foi alterada pelos fatores em estudo, mas a área transversal das fibras foi menor nos cordeiros terminados com feno, assim como os valores de pH, temperatura e as medidas dos fragmentos de miofibrila. Com o aumento do tempo de maturação de 0 para 3 e 7 dias post mortem, houve redução do comprimento dos fragmentos de miofibrilas. O sistema de terminação de cordeiros em confinamento somente com feno interfere mais intensamente na qualidade da carne que o sistema de terminação a pasto ou em confinamento com dieta completa.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The myotomal muscle of Synbranchus marmoratus was investigated using histochemical and immunohistochemical reactions. This musculature is composed of a superficial red compartment, uniformly distributed around the trunk circumferentially and also in the lateral line. The red compartment fibers are small in diameter and have an oxidative metabolism, a high rate of glycogen and a negative reaction to alkaline and acid myofibrillar ATPase (mATPase). The white muscle forms the bulk of the muscle mass. Its fibers are large in diameter and have a glycolytic metabolism, a negative reaction to glycogen, a strong reaction to alkaline mATPase and a negative reaction to acid mATPase. Between these two compartments there is an intermediate layer of fibers presenting a mosaic metabolism pattern with a high rate of glycogen. These fibers stained moderately for alkaline and acid m-ATPase. Several clusters of red muscles were observed inside the white muscle. Each cluster is composed of three fiber types, with a predominance of red and intermediate fibers. Reactivity to anti-MHC BA-D5 was positive only in the intermediate fibers. Reactivity to anti-MHC SC-71 was negative in all fiber types.
Resumo:
The purpose of this study was to determine whether the aerobic training-induced fiber-type transition in different muscles is associated with alterations in NFAT isoforms gene expression. We hypothesized that the aerobic training-induced fiber-type transition would be mediated by NFATc1-c3 isoforms without altering the CaN expression. Male Wistar rats (80 days old) were divided into a trained group (T; n=8) that underwent an 8-wk swimming endurance training program (5 days/week) and a control group (C; n=8). After the experimental period, the animals were sacrificed, and the soleus (SOL) and plantaris (PL) muscles were collected for morphometrical, histochemical and molecular analyses. Aerobic training induced a type I-to-type IIA fiber transition in the SOL muscle and a type IIB-to-type IIA fiber transition in the PL muscle, which were concomitant with a significant (p<0.05) increase in NFATc1-c3 gene expression in both the SOL and PL muscles. In contrast, the expression levels of calcineurin (CaN) and NFATc4 remained unchanged. Therefore, our results showed that fiber type switching induced by aerobic training is mediated by NFATc1-c3 isoforms without altering the CaN expression. © Georg Thieme Verlag KG Stuttgart. New York.
Resumo:
PURPOSE To gain a deeper understanding of the influence of skeletal muscle fiber orientation on metabolite visibility, magnetization transfer from water, and water proton relaxation rates in (1) H MR spectra. METHODS Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of 10 healthy adults, with the TA oriented either parallel or at the magic angle to the 3T field. Spectra were acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms before excitation. Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. RESULTS Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds were reduced by 29% to 67% when TA was parallel to B0 . Both tCr peak areas were strongly correlated to the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly different between orientations. Water T1 s were similar between orientations, but T2 s were statistically significantly shorter by 1 ms in the parallel orientation (P = 0.002). CONCLUSION Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially on muscle fiber orientation relative to B0 . In contrast, magnetization transfer rates appear to depend on muscle composition, rather than fiber orientation. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Missense mutations in ATP2A1 gene, encoding SERCA1 protein, cause a muscle disorder designed as congenital pseudomyotonia (PMT) in Chianina and Romagnola cattle or congenital muscular dystonia1 (CMD1) in Belgian Blue cattle. Although PMT is not life-threatening, CMD1 affected calves usually die within a few weeks of age as a result of respiratory complication. We have recently described a muscular disorder in a double muscle Dutch Improved Red and White cross-breed calf. Mutation analysis revealed an ATP2A1 mutation identical to that described in CMD1, even though clinical phenotype was quite similar to that of PMT. Here, we provide evidence for a deficiency of mutated SERCA1 in PMT affected muscles of Dutch Improved Red and White calf, but not of its mRNA. The reduced expression of SERCA1 is selective and not compensated by the SERCA2 isoform. By contrast, pathological muscles are characterized by a broad distribution of mitochondrial markers in all fiber types, not related to intrinsic features of double muscle phenotype and by an increased expression of sarcolemmal calcium extrusion pump. Calcium removal mechanisms, operating in muscle fibers as compensatory response aimed at lowering excessive cytoplasmic calcium concentration caused by SERCA1 deficiency, could explain the difference in severity of clinical signs.