293 resultados para MULTILAYERS
Resumo:
Plastic deformation behavior of Cu/Ni/Wmetallicmultilayers with individual layer thickness ranging from 5 nm to 300 nm is investigated by nanoindentation testing. The experimental results reveal that the composite still exhibits indentation-induced plastic deformation instability and the loss of strain hardening ability at the nanometer scale even if the composite contains two kinds of layer interfaces (face centered cubic(FCC)/FCC and FCC/ body centered cubic) simultaneously. Plastic deformation behavior of the nanolayered material was evaluated and analyzed.
Resumo:
Multilayers of Pb(Mg1/3Nb2/3)O-3 (PMN)-PbTiO3 (PT) were deposited through pulsed laser ablation deposition with different periodicities (d=10, 20, 30, 40, 50, 60, and 70 nm) for a constant total thickness of the film. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a periodicity range of 20-50 nm. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric and antiferroelectric (AFE) characteristics. Presence of long-range coupling and strain in multilayers with lower periodicity (similar to 10 nm) exhibited a clear ferroelectric behavior similar to a solid solution of PMN and PT. Multilayers with higher periodicities (20-50 nm) exhibited antiferroelectric behavior, which could be understood from the energy arguments. On further increase of periodicity, they again exhibit ferroelectric behavior. The polarization studies were carried out beyond the Curie temperature T-c of PMN to understand the interlayer interaction. The interaction is changed to a ferroelectric-paraelectric interlayer and tends to lose its antiferroelectric behavior. The behavior of remnant polarization P-r and dP(r)/dT with temperature clearly proves that the AFE coupling of these superlattices is due to the extrinsic interfacial coupling and not an intrinsic interaction as in a homogeneous conventional AFE material. The evidence of an averaged behavior at a periodicity of similar to 10 nm, and the behavior of individual materials at larger periodicities were further confirmed through dielectric phase transition studies. The presence of AFE interfacial coupling was insignificant over the dielectric phase transition of the multilayers.
Resumo:
Ab-initio calculations are used to determine the parameters that determine magnonic band structure of PdnFem multilayers (n = 2, m <= 8). We obtain the layer-resolved magnetization, the exchange coupling, and the magnetic anisotropy of the Pd-Fe structures. The Fe moment is 3.0 mu(B) close to the Pd layers and 2.2 mu(B) in the middle of the Fe layers. An intriguing but not usually considered aspect is that the elemental Pd is nonmagnetic, similar to Cu spacer layers in other multilayer systems. This leads to a pre-asymptotic ferromagnetic coupling through the Pd (about 40 mJ/m(2)). Furthermore, the Pd acquires a small moment due to spin polarization by neighboring Fe atoms, which translates into magnetic anisotropy. The anisotropies are large, in the range typical for L1(0) structures, which is beneficial for high-frequency applications. (C) 2011 American Institute of Physics. doi:10.1063/1.3556763]
Resumo:
Compositionally varying multilayers of (1−x) Pb(Mg1/3N2/3)O3–(x) PbTiO3 were fabricated using pulsed laser ablation technique. An antiferroelectriclike polarization hysteresis was observed in these relaxor based multilayer systems. The competition among the intrinsic ferroelectric coupling in the relaxor ferroelectrics and the antiferroelectric coupling among the dipoles at the interface gives rise to an antiferroelectriclike polarization behavior. An increment in the coercive field and the applied field corresponding to the polarization flipping at low temperatures, provide further insight on the competition among the long-range ferroelectric interaction and the interfacial interaction in the polarization behavior of these relaxor multilayers.
Resumo:
We describe a method to fabricate high-density biological microarrays using lithographic patterning of polyelectrolyte multi layers formed by spin assisted electrostatic layer-by-layer assembly. Proteins or DNA can be immobilized on the polyelectrolyte patterns via electrostatic attachment leading to functional microarrays. As the immobilization is done using electrostatically assembled polyelectrolyte anchor, this process is substrate independent and is fully compatible with a standard semiconductor fabrication process flow. Moreover, the electrostatic assembly of the anchor layer is a fast process with reaction saturation times of the order of a few minutes unlike covalent schemes that typically require hours to reach saturation. The substrate independent nature of this technique is demonstrated by functionalizing glass slides as well as regular transparency sheets using the same procedure. Using a model protein assay, we demonstrate that the non-covalent immobilization scheme described here has competitive performance compared to conventional covalent immobilization schemes described in literature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The paper reports the synthesis of Nb/Si multilayers (48/27 nm) deposited on Si single crystal substrate by sequential laser ablation of elemental Nb and Si. Significant amount of Nb is found in the amorphous Si layer (similar to 25-35 at.% Nb). The Nb layer is found to be polycrystalline. The phase evolution of the multilayer has been studied by annealing at 600 degrees C for various times and carrying out cross sectional electron microscopic studies. We report the formation of amorphous silicide layer at the Nb/Si interface followed by the formation of the NbSi2 phase in the Si layer. Further annealing leads to the nucleation of hexagonal Nb5Si3 grains in amorphous silicide layers at Nb/NbSi2 interfaces. These results are different from those reported for sputter deposited multilayer. (C) 2013 Elsevier B. V. All rights reserved.
Enhancing fluorescence signals from aluminium thin films and foils using polyelectrolyte multilayers
Resumo:
In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.
Resumo:
To address the amount of disorder and interface diffusion induced by annealing, all-Heusler multilayer structures, consisting of ferromagnetic Co2MnGe and nonmagnetic Rh2CuSn layers of varying thicknesses, have been investigated by means of hard x-ray photoelectron spectroscopy and x-ray magnetic circular dichroism. We find evidence for a 4 angstrom thick magnetically dead layer that, together with the identified interlayer diffusion, are likely reasons for the unexpectedly small magnetoresistance found for current-perpendicular-to-plane giant magnetoresistance devices based on this all-Heusler system. We find that diffusion begins already at comparably low temperatures between 200 and 250 degrees C, where Mn appears to be most prone to diffusion.
Resumo:
Polyelectrolytes are charged polymer species which electrostatically adsorb onto surfaces in a layer by layer fashion leading to the sequential assembly of multilayer structures. It is known that the morphology of weak polyelectrolyte structures is strongly influenced by environmental variables such as pH. We created a weak polyelectrolyte multilayer structure (similar to 100 nm thick) of cationic polymer poly-allylamine hydrochloride (PAH) and an anionic polymer poly-acrylic acid (PAA) on an etched clad fiber Bragg grating (EFBG) to study the pH induced conformational transitions in the polymer multilayers brought about by the variation in charge density of weak polyelectrolyte groups as a function of pH. The conformational changes of the polyelectrolyte multilayer structure lead to changes in optical density of the adsorbed film which reflects in the shift of the Bragg wavelength from the EFBG. Using the EFBG system we were able to probe reversible and irreversible pH induced transitions in the PAH/PAA weak polyelectrolyte system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.
Resumo:
This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.
Resumo:
Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Omega/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors.
Resumo:
unavailable<br>H. Sun's e-mail address is shy780327@siom.ac.cn.