410 resultados para MICRORING RESONATORS
Resumo:
We theoretically simulate and experimentally demonstrate ultra-large through-port extinctions in silicon-based asymmetrically-coupled add-drop microring resonators (MRs). Through-port responses in an add-drop MR are analyzed by simulations and large extinctions are found when the MR is near-critically coupled. Accurate fabrication techniques are applied in producing a series of 20 mu m-radii add-drop microrings with drop-side gap-widths in slight differences. A through-port extinction of about 42.7 dB is measured in an MR with through-and drop-side gap-width to be respectively 280 nm and 295 nm. The large extinction suggests about a 20.5 dB improvement from the symmetrical add-drop MR of the same size and the through-side gap-width. The experimental results are finally compared with the post-fabrication simulations, which show a gap-width tolerance of > 30 nm for the through-port extinction enhancement.
Resumo:
Novel compact design for 4-channel SOI-based reconfigurable optical add/drop multiplexer using microring resonators is presented and analyzed. Microring resonators have two important attributes as a key new technology for future optical communications, namely functionality and compactness. Functionality refers to the fact that a wide range of desirable filter characteristics can be synthesized by coupling multiple rings. Compactness refers the fact that ring resonators with radii about 30 mu m can lead to large scale integration of devices with densities on the order of 10(4) similar to 10(5) devices per square centimeter. A 4-channel reconfigurable optical add/drop multiplexer comprises a grid-like array of ridge waveguides which perpendicularly cross through each other. SOI-based resonators consisted of multiple rings at each of the cross-grid nodes serve as the wavelength selective switch, and they can switch an optical signal between two ports by means of tuning refractive index of one of the rings. The thermo-optic coefficient of silicon is 1.86x 10(-4) /K. Thus a temperature rise of 27K will increase the refractive index by 5 x 10(-3), which is enough to cause the switching of our designed microring resonators. The thermo-optic effect is used to suppress the resonator power transfer, rather than to promote loss. Thus, the input signal only suffers small attenuation and simultaneously low crosstalk can be achieved by using multiple rings.
Resumo:
Submitted by 张磊 (zhanglei@semi.ac.cn) on 2010-06-03T13:47:18Z No. of bitstreams: 1 Directed XOR_XNOR.pdf: 556366 bytes, checksum: c67167a8648c1242c1eec35d6cca24f6 (MD5)
Resumo:
The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks described above. LiNbO3 is the substrate commonly used to fabricate optical modulators thanks to its electro-optic characteristics. Since it is produced in high quantity, good quality and large wafers its price is low compared to other electro-optic substrate. We propose to use ion implantation as fabrication technology because in the other way standard optical waveguides realised in LiNbO3 by Proton Exchange (PE) or metal diffusion do not allow small bending radii, which are necessary to keep the circuit footprint small. We will show in fact that this approach allows to fabricate waveguides on Lithium Niobate that are better than PE or metal diffused waveguides as it allows smaller size devices and tailoring of the refractive index profile controlling the implantation parameters. Moreover, we will show that the ridge technology based on enhanced etching rate via ion implantation produces a waveguide with roughness lower than a dry etched one. Finally it has been assessed a complete technological process for fabrication of Microring Resonator devices in Lithium Niobate by ion implantation and the first prototypes have been produced.
Resumo:
A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes, such as a MZI with a single ring resonator, arepresented, and some of the issues about device design and fabrication are also discussed.
Resumo:
The first demonstration of a directly modulated microring laser array is presented for on-off keyed, wavelength- division- multiplexed fiber-optic data transmission. GaInAsP-InP microring resonators oscillating at separate wavelengths in the 1.5-μm band are vertically coupled to a common passive waveguide bus, which is fabricated on the reverse side of the InP membrane. Two microrings defined with radii for a wavelength channel separation of 6 nm have been assessed for both individual and simultaneous operation. Negligible power penalty (<0.2 dB) is observed for wavelength-division-multiplexed operation with and without transmission over a 25-km fiber span in a manner which indicates low crosstalk between the integrated sources. A device area of less than 0.12 mm2 per microring on a common passive bus allows a highly scalable solution for short-reach wavelength-multiplexed links. © 2008 IEEE.
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.
Resumo:
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000 x 500 mu m(2). The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper. (C) 2009 Optical Society of America
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
For a four-port microracetrack channel drop filter, unexpected transmission characteristics due to strong dispersive coupling are demonstrated by the light tunneling between the input-output waveguides and the resonator, where a large dropping transmission at off-resonance wavelengths is observed by finite-difference time-domain simulation. It causes a severe decline of the extinction ratio and finesse. An appropriate decrease of the coupling strength is found to suppress the dispersive coupling and greately increase the extinction ratio and finesse, a decreased coupling strength can be realized by the application of an asymmetrical coupling waveguide structure. In addition, the profile of the coupling dispersion in the transmission spectra can be predicted based on a coupled mode theory analysis of an equivalent system consisting of two coupling straight waveguides. The effects of structure parameters on the transmission spectra obtained by this method agree well with the numerical results. It is useful to avoid the strong dispersive coupling region in the filter design. (c) 2007 Optical Society of America.
Resumo:
Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.
Resumo:
in experiment, characteristics of silicon microring/racetrack resonators in submicron rib waveguides have been systematically investigated. It is demonstrated that only a transverse-electric mode is guided for a ratio of slab height to rib height h/H = 0.5. Thus, these microring/racetrack resonators can only function for quasi-transverse-electric mode, while they get rid of transverse-magnetic polarization. Electron beam lithography and inductively coupled plasma etching were employed and improved to reduce side-wall roughness for low propagation loss and high performance resonators. Then, the effects of waveguide dimensions, coupling region design, waveguide roughness, and oxide cladding for the resonators have been considered and analyzed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Characteristics of microring/racetrack resonators, in submicron SOI rib waveguides, have been investigated. The effects of waveguide dimensions, coupler design, roughness, and oxide cladding are considered. Moreover, guided mode, loss and dispersion of such waveguides are analyzed.