993 resultados para MARROW FAILURE SYNDROMES
Resumo:
Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly con-served CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063)
Resumo:
The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. Methods: We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. Results: The duplication allele had a frequency of 0.34 in the normal controls. There was a nonsignificant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. Conclusion: The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer.
Resumo:
During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.
Resumo:
La atrofia multisistémica (AMS) es una enfermedad degenerativa caracterizada por disautonomías y síntomas extrapiramidales. El diagnóstico diferencial con otros parkinsonismos es difícil, por lo cual se requiere una ayuda paraclínica para soportar el diagnóstico clínico. La degeneración del núcleo de Onuf, exclusiva en esta enfermedad, podría sugerir que la presencia de denervación en el esfínter anal podría ser tomada en cuenta como criterio diagnóstico de AMS. Se realizó una revisión sistemática con el fin de determinar la utilidad de la electromiografía de esfínter anal (EMG-EA) en el diagnóstico diferencial de AMS contra otros parkinsonismos. Se incluyeron 17 estudios que analizaron los resultados de EMG-EA en pacientes con AMS. De éstos, 11 de estudios fueron analíticos y compararon pacientes con AMS y otros parkinsonismos. Los 6 estudios restantes fueron descriptivos. La duración de los potenciales de unidad motora (PUM) es significativamente mayor en pacientes con AMS comparados con otros parkinsonismos, y utilizando un punto de corte > 13 ms muestra características operativas que hacen a este parámetro potencialmente útil. Solo un estudio encontró diferencias significativas en el porcentaje de PUM polifásicos, el cual tuvo una sensibilidad y especificidad clínicamente útil cuando el punto de corte es mayor a 60%. El resto de los estudios no reportan diferencias estadísticamente significativas entre parkinsonismos. La literatura disponible apunta a la potencial utilidad de la EMG-EA en el diagnóstico diferencial de la AMS de otros parkinsonismos; sin embargo es necesario conducir más estudios para solventar las limitaciones metodológicas existentes.
Resumo:
Introduction Fanconi anemia is an autosomal recessive disease characterized by a variety of congenital abnormalities, progressive bone marrow failure, increased chromosomal instability and higher risk to acute myeloid leukemia, solid tumors. This entity can be considered an appropriate biological model to analyze natural substances with possible genotoxic effect. The aims of this study were to describe and quantify structural chromosomal aberrations induced by 5 flavones, 2 isoflavones and a topoisomerase II chemotherapeutic inhibitor in Fanconi anemia lymphocytes in order to determine chromosomal numbers changes and/ or type of chromosomal damage. Materials and methods Chromosomes stimulated by phytohaemagglutinin M, from Fanconi anemia lymphocytes, were analysed by conventional cytogenetic culture. For each chemical substance and controls, one hundred metaphases were evaluated. Chromosomal alterations were documented by photography and imaging analyzer. To statistical analysis was used chi square test to identify significant differences between frequencies of chromosomal damage of basal and exposed cell cultured a P value less than 0.05. Results There were 431 chromosomal alterations in 1000 metaphases analysed; genistein was the more genotoxic bioflavonoid, followed in descendent order by genistin, fisetin, kaempferol, quercetin, baicalein and miricetin. Chromosomal aberrations observed were: chromatid breaks, chromosomal breaks, cromatid and chromosomal gaps, quadriratials exchanges, dicentrics chromosome and complex rearrangements. Conclusion Bioflavonoids as genistein, genistin and fisetin, which are commonly present in the human diet, showed statistical significance in the number of chromosomal aberrations in Fanconi anemia lymphocytes, regarding the basal damage.
Resumo:
Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied; interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT) or the telomerase RNA template (hTERC) gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected; this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age.
Resumo:
Dyskeratosis congenita is a cancer-prone bone marrow failure syndrome caused by aberrations in telomere biology.
Resumo:
OBJECTIVE: To study if telomere length can be used as a surrogate marker for the mitotic history in normal and affected hematopoietic cells from patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: The telomere length was measured by automated multicolor flow fluorescence in situ hybridization in glycosyl-phosphatidyl-inositol anchored protein (GPI)-negative and GPI-positive peripheral blood leukocytes. Eleven patients were studied, two with predominantly hemolytic PNH and nine with PNH associated with marrow failure. RESULTS: Telomere length in GPI-negative cells was significantly shorter than in GPI-positive cells of the same patient (p < 0.01, n = 11). The difference in telomere length (telomere length in GPI-positive minus telomere length in GPI-negative cells) correlated with the percentage of GPI-negative white blood cells. CONCLUSION: Our results support the hypothesis that telomere length is correlated to the replicative history of GPI-positive and GPI-negative cells and warrant further studies of telomere length in relation to disease progression in PNH.
Resumo:
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which the known susceptibility genes (DKC1, TERC, and TERT) belong to the telomere maintenance pathway; patients with DC have very short telomeres. We used multicolor flow fluorescence in situ hybridization analysis of median telomere length in total blood leukocytes, granulocytes, lymphocytes, and several lymphocyte subsets to confirm the diagnosis of DC, distinguish patients with DC from unaffected family members, identify clinically silent DC carriers, and discriminate between patients with DC and those with other bone marrow failure disorders. We defined "very short" telomeres as below the first percentile measured among 400 healthy control subjects over the entire age range. Diagnostic sensitivity and specificity of very short telomeres for DC were more than 90% for total lymphocytes, CD45RA+/CD20- naive T cells, and CD20+ B cells. Granulocyte and total leukocyte assays were not specific; CD45RA- memory T cells and CD57+ NK/NKT were not sensitive. We observed very short telomeres in a clinically normal family member who subsequently developed DC. We propose adding leukocyte subset flow fluorescence in situ hybridization telomere length measurement to the evaluation of patients and families suspected to have DC, because the correct diagnosis will substantially affect patient management.
Resumo:
Patients with dyskeratosis congenita (DC), a heterogeneous inherited bone marrow failure syndrome, have abnormalities in telomere biology, including very short telomeres and germline mutations in DKC1, TERC, TERT, or NOP10, but approximately 60% of DC patients lack an identifiable mutation. With the very short telomere phenotype and a highly penetrant, rare disease model, a linkage scan was performed on a family with autosomal-dominant DC and no mutations in DKCI, TERC, or TERT. Evidence favoring linkage was found at 2p24 and 14q11.2, and this led to the identification of TINF2 (14q11.2) mutations, K280E, in the proband and her five affected relatives and TINF2 R282H in three additional unrelated DC probands, including one with Revesz syndrome; a fifth DC proband had a R282S mutation. TINF2 mutations were not present in unaffected relatives, DC probands with mutations in DKC1, TERC, or TERT or 298 control subjects. We demonstrate that a fifth gene, TINF2, is mutated in classical DC and, for the first time, in Revesz syndrome. This represents the first shelterin complex mutation linked to human disease and confirms the role of very short telomeres as a diagnostic test for DC.
Resumo:
Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the resulting lack of human genetic model system renders their functional studies difficult. In this study, I established isogenic human FANCM- and FAAP24-null mutants through homologous replacement-mediated gene targeting in HCT-116 cells, and systematically investigated the functions of FANCM and FAAP24 inchromosome stability, FA pathway activation, DNA damage checkpoint signaling, and ICL repair. I found that the FANCM-/-/FAAP24-/- double mutant was much more sensitive to DNA crosslinking agents than FANCM-/- and FAAP24-/- single mutants, suggesting that FANCM and FAAP24 possess epistatic as well as unique functions in response to ICL damage. I demonstrated that FANCM and FAAP24 coordinately support the activation of FA pathway by promoting chromatin localization of FA core complex and FANCD2 monoubiqutination. They also cooperatively function to suppress sister chromatid exchange and radial chromosome formation, likely by limiting crossovers in recombination repair. In addition, I defined novel non-overlapping functions of FANCM and FAAP24 in response to ICL damage. FAAP24 plays a major role in activating ICL-induced ATR-dependent checkpoint, which is independent of its interaction with FANCM. On the other hand, FANCM promotes recombination-independent ICL repair independently of FAAP24. Mechanistically, FANCM facilitates recruitment of nucleotide excision repair machinery and lesion bypass factors to ICL damage sites through its translocase activity. Collectively, my studies provide mechanistic insights into how genome integrity is both coordinately and independently protected by FANCM and FAAP24.
Resumo:
It has been suggested that increased intramedullary apoptosis may explain the paradox between peripheral blood cytopenias and the hyper- or normo-cellular bone marrow observed in the myelodysplastic syndromes (MDS). We wished to see if culture performance could be related to the presence of apoptotic cells in a group of patients with MDS (12 patients) and other patients with peripheral blood cytopenias (six patients) which caused diagnostic difficulty. There was no correlation between LTBMC or adherent cell growth and the presence of apoptotic cells in the original marrow sample. A variable degree of apoptosis was observed in both groups of patients. LTBMC profiles correlated well with diagnosis but were unrelated to the extent of intramedullary apoptosis. This suggests that apoptosis is a much more ubiquitous process in disease than previously thought. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.