929 resultados para Lorenz Curve
Resumo:
This paper shows the Gini Coefficient, the dissimilarity Index and the Lorenz Curve for the Spanish Port System by type of goods from 1960 to the year 2010 for business units: Total traffic, Liquid bulk cargo, Solid bulk cargo, General Merchandise and Container (TEUs) with the aim of carcaterizar the Spanish port systems in these periods and propose future strategies.
Resumo:
Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality
Resumo:
The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scan- ning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indi- cators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient ( GC ), Lorenz asymmetry ( LA ), the proportions of basal area ( BALM ) and stem density ( NSLM ) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN–RF) or most similar neighbour (MSN). In the case of tree list esti- mation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN impu- tation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in for- ested areas.
Resumo:
A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.
Resumo:
Cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0001.gif rule [Singh (1975)] has been suggested in the literature for finding approximately optimum strata boundaries for proportional allocation, when the stratification is done on the study variable. This paper shows that for the class of density functions arising from the Wang and Aggarwal (1984) representation of the Lorenz Curve (or DBV curves in case of inventory theory), the cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0002.gif rule in place of giving approximately optimum strata boundaries, yields exactly optimum boundaries. It is also shown that the conjecture of Mahalanobis (1952) “. . .an optimum or nearly optimum solutions will be obtained when the expected contribution of each stratum to the total aggregate value of Y is made equal for all strata” yields exactly optimum strata boundaries for the case considered in the paper.
Resumo:
[Es] Éste trabajo estudia la desigualdad en la distribución de la renta en la Comunidad Autónoma del País Vasco entre los años 2001 y 2011. Este periodo está dividido en dos sub-periodos, uno de bonanza económica entre 2001 y 2009 y otro de crisis económica y financiera entre 2009 y 2011. Se considera la renta disponible como variable y se toman los datos de UDALMAP y la encuesta de pobreza y desigualdades sociales (2012). Respaldado por un estudio teórico y referenciado de las herramientas para la medición de la desigualdad utilizadas en el trabajo, se analizan los estadísticos de los datos y se mide la distribución de la renta mediante el análisis de los principales y más reconocidos métodos para el estudio de la desigualdad como son la curva de Lorenz, el índice de Gini, la distribución inter-cuartil y el índice de Theil. Los resultados obtenidos indican que la desigualdad en la distribución de la renta en la CAPV (2001-2011) se ha reducido, si bien al analizar los sub-periodos no encontramos factores económicos o territoriales que expliquen con claridad las razones de la variación de la renta.
Resumo:
The present study focuses attention on defining certain measures of income inequality for the truncated distributions and characterization of probability distributions using the functional form of these measures, extension of some measures of inequality and stability to higher dimensions, characterization of bivariate models using the above concepts and estimation of some measures of inequality using the Bayesian techniques. The thesis defines certain measures of income inequality for the truncated distributions and studies the effect of truncation upon these measures. An important measure used in Reliability theory, to measure the stability of the component is the residual entropy function. This concept can advantageously used as a measure of inequality of truncated distributions. The geometric mean comes up as handy tool in the measurement of income inequality. The geometric vitality function being the geometric mean of the truncated random variable can be advantageously utilized to measure inequality of the truncated distributions. The study includes problem of estimation of the Lorenz curve, Gini-index and variance of logarithms for the Pareto distribution using Bayesian techniques.
Resumo:
Partial moments are extensively used in actuarial science for the analysis of risks. Since the first order partial moments provide the expected loss in a stop-loss treaty with infinite cover as a function of priority, it is referred as the stop-loss transform. In the present work, we discuss distributional and geometric properties of the first and second order partial moments defined in terms of quantile function. Relationships of the scaled stop-loss transform curve with the Lorenz, Gini, Bonferroni and Leinkuhler curves are developed
Resumo:
This paper investigates the income inequality generated by a jobsearch process when di§erent cohorts of homogeneous workers are allowed to have di§erent degrees of impatience. Using the fact the average wage under the invariant Markovian distribution is a decreasing function of the discount factor (Cysne (2004, 2006)), I show that the Lorenz curve and the between-cohort Gini coe¢ cient of income inequality can be easily derived in this case. An example with arbitrary measures regarding the wage o§ers and the distribution of time preferences among cohorts provides some insights into how much income inequality can be generated, and into how it varies as a function of the probability of unemployment and of the probability that the worker does not Önd a job o§er each period.
Resumo:
This paper investigates the income inequality generated by a jobsearch process when di§erent cohorts of homogeneous workers are allowed to have di§erent degrees of impatience. Using the fact the average wage under the invariant Markovian distribution is a decreasing function of the time preference (Cysne (2004)), I show that the Lorenz curve and the between-cohort Gini coe¢ cient of income inequality can be easily derived in this case. An example with arbitrary measures regarding the wage o§ers and the distribution of time preferences among cohorts provides some quantitative insights into how much income inequality can be generated, and into how it varies as a function of the probability of unemployment and of the probability that the worker does not Önd a job o§er each period.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
En la primera parte del presente trabajo se investigan diferentes formas de cálculo de la razón de concentración conocida como Coeficiente o Índice de Gini, y el no cumplimiento del axioma conocido como de "invariancia a la replicación" o "Principio de Población de Dalton" en algunas de ellas. El alcance de las conclusiones se limita al comportamiento de las fórmulas sometidas a prueba (se encuentran entre las más conocidas) cuando son aplicadas a distribuciones de datos desagregados. En la segunda parte se propone un factor de corrección para las fórmulas de cálculo analizadas, de manera que satisfagan el Principio de Población.
Resumo:
For non-negative random variables with finite means we introduce an analogous of the equilibrium residual-lifetime distribution based on the quantile function. This allows us to construct new distributions with support (0, 1), and to obtain a new quantile-based version of the probabilistic generalization of Taylor's theorem. Similarly, for pairs of stochastically ordered random variables we come to a new quantile-based form of the probabilistic mean value theorem. The latter involves a distribution that generalizes the Lorenz curve. We investigate the special case of proportional quantile functions and apply the given results to various models based on classes of distributions and measures of risk theory. Motivated by some stochastic comparisons, we also introduce the “expected reversed proportional shortfall order”, and a new characterization of random lifetimes involving the reversed hazard rate function.