388 resultados para Lipschitz Mappings
Resumo:
2000 Mathematics Subject Classification: 46B03
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we investigate the classification of mappings up to K-equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C(0) K-equivalence and bi-Lipschitz K-equivalence. We give an algebraic criterion for bi-Lipschitz K-triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings f, g : R(n) -> R(n), finitely determined with respect to K-equivalence are C(0)-K-equivalent if and only if they have the same degree in absolute value.
Resumo:
We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.
Resumo:
The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Holder triangle is studied. For this problem, the ""moduli"" are described completely in certain combinatorial terms.
Resumo:
We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.
Resumo:
In the present paper, we establish two fixed point theorems for upper semicontinuous multivalued mappings in hyperconvex metric spaces and apply these to study coincidence point problems and minimax problems. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In computer simulations of smooth dynamical systems, the original phase space is replaced by machine arithmetic, which is a finite set. The resulting spatially discretized dynamical systems do not inherit all functional properties of the original systems, such as surjectivity and existence of absolutely continuous invariant measures. This can lead to computational collapse to fixed points or short cycles. The paper studies loss of such properties in spatial discretizations of dynamical systems induced by unimodal mappings of the unit interval. The problem reduces to studying set-valued negative semitrajectories of the discretized system. As the grid is refined, the asymptotic behavior of the cardinality structure of the semitrajectories follows probabilistic laws corresponding to a branching process. The transition probabilities of this process are explicitly calculated. These results are illustrated by the example of the discretized logistic mapping.
Resumo:
In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.
Resumo:
The present paper is devoted to the study of linear maps preserving certain relations, such as the sharp partial order and the star partial order in semisimple Banach algebras and C*-algebras.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."