1000 resultados para Latex products
Science and technology of rubber reclamation with special attention to NR-based waste latex products
Resumo:
A comprehensive overview of reclamation of cured rubber with special emphasis on latex reclamation is depicted in this paper. The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread, etc. Due to the strict specifications for the products and the unstable nature of the latex as high as 15% of the final latex products are rejected. As waste latex rubber (WLR) represents a source of high-quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. The role of the different components in the reclamation recipe is explained and the reaction mechanism and chemistry during reclamation are discussed in detail. Different types of reclaiming processes are described with special reference to processes, which selectively cleave the cross links in the vulcanized rubber. The state-of-the-art techniques of reclamation with special attention on latex treatment are reviewed. An overview of the latest development concerning the fundamental studies in the field of rubber recycling by means of low-molecular weight compounds is described. A mathematical model description of main-chain and crosslink scission during devulcanization of a rubber vulcanizate is also given.
Resumo:
The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread etc. Because of the strict specifications for the products and the unstable nature of the latex, as high as 15%, of the final latex products are rejected. Since waste latex rubber (WLR) represents a source of high quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. Two types of WLR with different amounts of polysulfidic bridges are used in these experiments, which are reclaimed with variation of the concentration of the reclaiming agents, the reclamation temperature and time, Di phenyldisultide, 2-aminophenyldisulfide and 2,2'-dibenzamidodiphenyldisulfide (DBADPDS) are used as reclaiming agents, and the effect of diphenyldisulfides (DPDS) with different substituents, on the reclamation efficiency of WLR is investigated. A kinetic study of the reclamation reaction with the three reclaiming agents is done. The reaction rates and activation energies are calculated and compared with literature values. The comparative study of the three different reclaiming agents shows that (DBADPDS) is able to break the crosslinks at temperature levels 20'C below the temperature levels normally used with DPDS. Another advantage of this reclaiming agent is the reduced smell during the reclamation process and of the final reclaims, one of the most important shortcomings of other disulfides used for this purpose.
Resumo:
Waste latex products are converted to a processabto material by a novel economical process developed in our laboratory , It contains rubber hydrocarbon of very high quality and Is lightly cross -linked. Styrene-butadlene rubber is mixed with latex reclaim In different proportions . The mechanical properties are found to be improved up to 60 percent replacement of styrene-butadlene rubber by latex reclaim . The curing of styrene-butadiene rubber Is found to be accelerated by the addition of latex reclaim. The processablllty study shows that the blends can be processed similar to SBRINR blends.
Resumo:
Latex allergy is a serious, possibly life threatening health hazard in the perioperative environment. Policy and procedures should be developed to identify patients who may be sensitive to latex and to ensure the avoidance of latex products in their care. Healthcare workers should also take steps to avoid exposure and protect themselves from hypersensitivity reactions.
Resumo:
Scrap latex products contain rubber hydrocarbon of very high quality, that is only slightly crosslinked. A novel economic technique for converting such latex waste into a processible material is developed. This paper reports the effect of adding this latex reclaim to natural rubber. It is shown that latex reclaim can replace raw natural rubber up to about 50 wt.% without affecting mechanical properties.
Resumo:
In natural rubber/high styrene resin microcellular sheets, part of natural rubber was replaced by latex reclaim prepared from waste latex products. The mechanical properties and cell structure of the products were evaluated. It was found that latex reclaim can replace about 30% of natural rubber without affecting the technical properties of the microcellular sheets.
Resumo:
Latex protein allergy is a serious problem faced by users of natural rubber latex products. This is severe in health care workers, who are constantly using latex products like examination gloves, surgical gloves etc. Out of the total proteins only a small fraction is extractable and only these proteins cause allergic reactions in sensitized people. Enzymic deproteinisation of latex and leaching and chlorination of latex products are the common methods used to reduce the severity of the problem.Enzyme deproteinisation is a cubersome process involving high cost and process loss.Physical properties of such films are poor. Leaching is a lengthy process and in leached latex products presence of extractable proteins is observed on further storing. Chlorination causes yellowing of latex products and reduction in tensile properties.In this context a more simple process of removal of extractable proteins from latex itself was investigated. This thesis reports the application of poly propylene glycol (PPG) to displace extractable proteins from natural latex. PPG is added to 60 % centrifuged natural latex to the extent of 0.2 % m/rn, subssequently diluted to 30 % dry rubber content and again concentrated to obtain a low protein latex.Dilution of concentrated latex and subsequent concentration lead to a total reduction in non - rubber solids in the concentrate, especially proteins and reduction in the ionic concentration in the aqueous phase of the latex. It has been reported that proteins in natural rubber / latex affect its behaviour in the vulcanisation process. Ionic concentration in the aqueous phase of latex influence the stability, viscosity and flow behaviour of natural latex. Hence, a detailed technological evaluation was carried out on this low protein latex. In this study, low protein latex was compared with single centrifuged latex ( the raw material to almost every latex product), double centrifuged latex ( because dilution and second concentration of latex is accompanied by protein removal to some extent and reduction in the ionic concentration of the aqueous phase of latex.). Studies were conducted on Sulphur cure in conventional and EV systems under conditions of post ~ cure and prevulcanisation of latex. Studies were conducted on radiation cure in latex stage. Extractable protein content in vulcanised low protein latex films are observed to be very low. lt is observed that this low protein latex is some what slower curing than single centrifuged latex, but faster than double centrifuged latex. Modulus of low protein latex films were slightly low. In general physical properties of vulcanised low protein latex films are only siightly lower than single centrifuged latex. Ageing properties of the low protein latex films were satisfactory. Viscosity and flow behaviour of low protein latex is much better than double centrifuged latex and almost comparable to single centrifuged latex. On observing that the physical properties and flow behaviour of low protein latex was satisfactory, it was used for the preparation of examination gloves and the gloves were evaluated. It is observed that the properties are conforming to the Indian Standard Specifications. It is thus observed that PPG treatment of natural latex is a simple process of preparing low protein latex. Extractable protein content in these films are very low.The physical properties of the films are comparable to ordinary centrifuged latex and better than conventionally deprotenized latex films. This latex can be used for the production of examination gloves.
Resumo:
The primary aim of this work has been to develop a cost effective process that can be operated at room temperature for developing latex reclaim with superior mechanical properties. With this objective in mind the researcher proposes to study the reclaiming action of four different chemicals on latex products waste. Waste latex products are chosen because it has a higher potential to generate good quality rubber hydrocarbon since all latex products are based on either high quality concentrated latex or creamed latex. Moreover, all latex products are only lightly crosslinked and not masticated and hence not mechanically degraded. The author also proposes to fully explore the possible application of latex reclaim in various fields..
Resumo:
Systematic investigations on prevulcanization of NR latex with special reference to the influence of storage of latex and after-treatments of films, have been carried out. The other aspects studied include the effect of temperature on sulphur prevulcanization, the extent of crosslinking, tensile properties, stress relaxation characteristics, water absorption and leaching characteristics of prevulcanizcd latex films
Resumo:
The main objective of the present study was to explore ways of making latex products more cost effective and versatile. Polyethylene glycol was identified as a surface active agent in latex compounds which improves the filler-polymer interaction and also distributes the filler more uniformly. The use of such surface active agents can develop filled latex products with improved mechanical properties at a lower cost. In this study dispersions of carbon black and silica were successfully added to NR latex under high speed stirring without destabilizing latex.
Resumo:
The overall objective of the present study was to develop a novel and economic reclaiming process that does not adversely affect the quality of rubber and to investigate methods of utilising the reclaim. Since waste latex products represent a potential source of high quality rubber hydrocarbon, it was decided to develop a process based on such latex wastes. The study revealed that latex reclaim could replace raw natural rubber upto about 50 per cent of its weight without any serious deterioration in mechanical properties.
Resumo:
Natural rubber latex, an aqueous colloidal dispersion of polyisoprene is widely used in production of gloves, catherers, rubber bands etc. The natural rubber latex content present in products such as gloves causes allergic problems. Of the different types of allergies reported, latex is known to produce Type I and Type IV allergies. Type I is called immediate hypersensitivity and type IV is called delayed hypersensitivity. It has been reported that some of the proteins present in the latex are mainly responsible for the allergic reactions type I. Significant reduction in the allergic response (type I) of natural rubber latex can be achieved by the reduction in its protein content, however out of the total proteins present in the latex or latex film only a fraction is extractable. The major techniques employed to reduce protein content of latex include leaching, autoclaving, chlorination, use of proteolytic enzymes and use of non ionic surfactants. Sulphur vulcanization of dipped products is responsible for Type IV allergy. N-nitrosamine, a carcinogenic substance is produced as a result of sulphur vulcanization. Radiation vulcanization can be used as an alternative for sulphur vulcanization. The current research deals with techniques to reduce the allergy associated with latex products. To reduce the type I allergy, low protein latex is developed using polyethylene glycol, a non- ionic surfactant. The present study employs radiation vulcanization to eliminate type IV allergy. The effect of different cure systems and fillers on the properties of low protein latex is also investigated as a part of the study.
Resumo:
O látex está sendo considerado o alergênico do ano 2000, tendo em vista que inúmeros indivíduos, principalmente profissionais da área de saúde e pacientes submetidos a várias intervenções diagnósticas e terapêuticas, estão freqüentemente expostos aos alérgenos do látex, presentes em produtos de borracha natural. As manifestações clínicas conseqüentes às reações alérgicas de hipersensibilidade imediata vão desde rinite, urticária, conjuntivite, angioedema, asma, até anafilaxia. Estudos recentes estão demonstrando que pacientes alérgicos ao látex desenvolvem concomitantemente sensibilização a certos alimentos de origem vegetal, especialmente frutas como papaia, figo, banana, abacate, kiwi, pêssego, abacaxi, melão e castanha, acreditando-se numa provável ocorrência de reações cruzadas entre os alérgenos do látex e destas frutas. Faz-se, então, uma revisão sobre a alergia ao látex, em particular sobre os grupos de risco, incluindo a presença de reatividade cruzada entre o látex e as frutas.
Resumo:
INTRODUÇÃO: A alergia ao látex é um importante problema de saúde pública, especialmente em grupos de risco que têm contato frequente com este potente alérgeno. Este estudo estimou a prevalência e os fatores de risco para sensibilização ao látex em pacientes com mielomeningocele (MMC) submetidos a procedimentos cirúrgicos urológicos no HC-FMUSP. MÉTODOS: Foram selecionados pacientes com MMC submetidos a pelo menos uma cirurgia urológica, entre 2009 e 2014.Todos foram entrevistados e seus prontuários revisados. Uma amostra de sangue permitiu que a IgE específica ao látex, a K82, e seus recombinantes fossem investigados pelo método lmmunoCAP100 (kUa/L -1). A associação entre a exposição e o desfecho foi avaliada por meio de regressão logística de Poisson, Quiquadrado ou o teste exato de Fischer, para variáveis categóricas. O teste t de Student foi utilizado para comparar variáveis contínuas (nível de significância de 5%). Foram calculados a razão de prevalência (RP) e o intervalo de confiança de 95%. RESULTADOS: Foram identificados Duzentos e doze pacientes (51% do sexo masculino, 20,4 ± 6,4 anos de idade), 68 foram submetidos a pelo menos um procedimento urológico e 51 aceitaram participar (87,9%). Vinte e nove pacientes foram considerados não-sensibilizados (IgE específica para o látex :: a 0,7 kUa/L) e 22 sensibilizados ao látex com IgE > 0,7 kUa/L. Quando comparados os dois grupos, o sensibilizado apresentou um número de procedimentos cirúrgicos maior (11,6 ± 5,9 vs 7,2 ± 5,6) e dentre eles 48,3% apresentaram alguma alergia anterior contra 27,6% no grupo não sensibilizado. A sensibilização ao látex foi independentemente associada com alergia a produtos de látex (p = 0,014) e com o número de cirurgias anteriores (p = 0,032). A alergia ao látex tinha uma razão de prevalência de 2,87 (95% Cl: 1,24 a 6,65) ajustado para o número de cirurgias. Para cada procedimento cirúrgico, ajustado à alergia a produtos que contém látex, aumentou o risco para sensibilização em 4% (PR = 1,04; 95% CI: 1,00-1,09). CONCLUSÕES: A história de alergia ao látex e o número de cirurgias foram fatores de risco independentes para sensibilização ao látex
Resumo:
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.