921 resultados para Landau parameter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.
Resumo:
O objetivo geral deste projeto é propor um modelo bidimensional que descreva o novo estado supercondutor, que apresenta simetria de cristal líquido, chamado de supercondutor nemático. O estudo começa com uma introdução sobre a teoria de Landau-Ginzburg das transições de fase, onde são discutidos conceitos como parâmetro de ordem e as ordens das transições de fase, que são essenciais para o desenvolvimento deste projeto. Em seguida, é feita uma discussão sobre as principais características dos supercondutores como a resistência zero, o efeito Meissner-Ochsenfeld, os tipos de supercondutores, o surgimento de vórtices e uma análise sobre a teoria de Landau-Ginzburg para transição de fase metal-supercondutor. Após isto, é feita uma abordagem sobre os principais tipos de cristais líquidos, com destaque ao cristal líquido nemático, onde é desenvolvida a teoria de Landau-Ginzburg para transição de fase isotrópica-nemática e um estudo sobre o surgimento de disclinações no cristal líquido nemático em duas dimensões. Por fim, é apresentado o modelo proposto para descrever o estado supercondutor nemático, com a construção da teoria de Landau-Ginzburg, o estudo do acoplamento entre as fases e os defeitos topológicos presentes nesse estado.
Resumo:
The Landau parameters of Skyrme interactions in the spin and spin-isospin channels are studied using various Skyrme effective interactions with and without tensor correlations. We focus on the role of the tensor terms on the spin and spin-isospin instabilities that can occur in nuclear matter above saturation density. We point out that these instabilities are realized in nuclear matter at the critical density of about two times the saturation density for all the adopted parameter sets. The critical density is shown to be very much dependent not only on the choice of the Skyrme parameter set, but also on the inclusion of the tensor terms.
Resumo:
Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m(6)) theory. In this model m = N-f-Z(f)/A(f) is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m-scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Systems of two-dimensional hard ellipses of varying aspect ratios and packing fractions are studied by Monte Carlo simulations in the generalised canonical ensemble. From this microscopic model, we extract a coarse-grained macroscopic Landau-de Gennes free energy as a function of packing fraction and orientational order parameter. We separate the free energy into the ideal orientational entropy of non-interacting two-dimensional spins and an excess free energy associated with excluded volume interactions. We further explore the isotropic-nematic phase transition using our empirical expression for the free energy and find that the nature of the phase transition is continuous for the aspect ratios we studied.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.