928 resultados para LUNG-FUNCTION
Resumo:
Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (β= −0.0452, p=0.024) as well as COPD (β= −0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07×10−7), FVC (p=2.07×10−5), and FEV1/FVC (p=5.27×10−3). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.
Resumo:
Abstract: Background: A20 and TAX1BP1 interact to negatively regulate NF-
-driven inflammation. A20 expression is altered in F508del/F508del
patients. Here we explore the effect of CFTR and CFTR genotype on A20 and
TAX1BP1expression. The relationship with lung function is also assessed.
Methods: Primary Nasal Epithelial cells (NECs) from CF patients
(F508del/F508del, n=8, R117H/F508del, n=6) and Controls (age-matched,
n=8), and 16HBE14o- cells were investigated. A20 and TAX1BP1 gene
expression was determined by qPCR.
Results: Silencing of CFTR reduced basal A20 expression. Following LPS
stimulation A20 and TAX1BP1 expression was induced in control NECs and
reduced in CF NECs, broadly reflecting the CF genotype: F508del/F508del
had lower expression than R117H/F508del. A20, but not TAX1BP1 expression,
was proportional to FEV1 in all CF patients (r=0.968, p<0.001).
Conclusions: A20 expression is reduced in CF and is proportional to FEV1.
Pending confirmation in a larger study, A20 may prove a novel predictor
of CF inflammation/disease severity.
Resumo:
More infants with bronchopulmonary dysplasia (BPD) now survive to adulthood but little is known regarding persisting respiratory impairment. We report respiratory symptoms, lung function and health-related quality of life (HRQoL) in adult BPD survivors compared with preterm (non-BPD) and full term (FT) controls.
Respiratory symptoms (European Community Respiratory Health Survey) and HRQoL [EuroQol 5D (EQ-5D)] were measured in 72 adult BPD survivors [mean(SD) study age 24.1(4.0)y; mean(SD) gestational age (GA)=27.1(2.1)wk; mean(SD) birth weight (BW)=955(256)g] cared for in the Regional Neonatal Intensive Care Unit, Belfast (between 1978 and 1993) were compared with 57 non-BPD controls [mean(SD) study age 25.3(4.0)y; mean(SD) GA 31.0(2.5)wk; mean(SD) BW 1238(222)g] and 78 FT controls [mean(SD) study age 25.7(3.8)y; mean(SD) GA=39.7(1.4)wk; mean(SD) BW=3514(456)g] cared for at the same hospital. Spirometry was performed on 56 BPD, 40 non-BPD and 55 FT participants.
BPD subjects were twice as likely to report wheeze and three times more likely to use asthma medication than controls. BPD adults had significantly lower FEV1 and FEF25–75 than both the preterm non-BPD and FT controls (all p<0.01). Mean EQ-5D was 6 points lower in BPD adults compared to FT controls (p<0.05).
BPD survivors have significant respiratory and quality of life impairment persisting into adulthood.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Studies of cooking-generated NO2 effects are rare in occupational epidemiology. In the present study, we evaluated the lung function of professional cooks exposed to NO2 in hospital kitchens. We performed spirometry in 37 cooks working in four hospital kitchens and estimated the predicted FVC, FEV1 and FEF25-75, based on age, sex, race, weight, and height, according to Knudson standards. NO2 measurements were obtained for 4 consecutive days during 4 different periods at 20-day intervals in each kitchen. Measurements were performed inside and outside the kitchens, simultaneously using Palm diffusion tubes. A time/exposure indicator was defined as representative of the cumulative exposure of each cook. No statistically significant effect of NO2 exposure on FVC was found. Each year of work as a cook corresponded to a decrease in predicted FEV1 of 2.5% (P = 0.046) for the group as a whole. When smoking status and asthma were included in the analysis the effect of time/exposure decreased about 10% and lost statistical significance. on predicted FEF25-75, a decrease of 3.5% (P = 0.035) was observed for the same group and the inclusion of controllers for smoking status and asthma did not affect the effects of time/exposure on pulmonary function parameter. After a 10-year period of work as cooks the participants of the study may present decreases in both predicted FEV1 and FEF25-75 that can reach 20 and 30%, respectively. The present study showed small but statistically significant adverse effects of gas stove exposure on the lung function of professional cooks.
Resumo:
Background: The use of biomass for cooking and heating is considered an important factor associated with respiratory diseases. However, few studies evaluate the amount of particulate matter less than 2.5 mu in diameter (PM2.5), symptoms and lung function in the same population. Objectives: To evaluate the respiratory effects of biomass combustion and compare the results with those of individuals from the same community in Brazil using liquefied petroleum gas (Gas). Methods: 1402 individuals in 260 residences were divided into three groups according to exposure (Gas, Indoor-Biomass, Outside-Biomass). Respiratory symptoms were assessed using questionnaires. Reflectance of paper filters was used to assess particulate matter exposure. In 48 residences the amount of PM2.5 was also quantified. Pulmonary function tests were performed in 120 individuals. Results: Reflectance index correlated directly with PM2.5 (r=0.92) and was used to estimate exposure (ePM2.5). There was a significant increase in ePM2.5 in Indoor-Biomass and Outside-Biomass, compared to Gas. There was a significantly increased odds ratio (OR) for cough, wheezing and dyspnea in adults exposed to Indoor-Biomass (OR=2.93, 2.33, 2.59, respectively) and Outside-Biomass (OR=1.78, 1.78, 1.80, respectively) compared to Gas. Pulmonary function tests revealed both Non-Smoker-Biomass and Smoker-Gas individuals to have decreased %predicted-forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) as compared to Non-Smoker-Gas. Pulmonary function tests data was inversely correlated with duration and ePM2.5. The prevalence of airway obstruction was 20% in both Non-Smoker-Biomass and Smoker-Gas subjects. Conclusion: Chronic exposure to biomass combustion is associated with increased prevalence of respiratory symptoms, reduced lung function and development of chronic obstructive pulmonary disease. These effects are associated with the duration and magnitude of exposure and are exacerbated by tobacco smoke. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Lymphangioleiomyomatosis (LAM) is characterised by progressive airway obstruction and hypoxaemia in young women. Although sleep may trigger hypoxaemia in patients with airway obstruction, it has not been previously investigated in patients with LAM. Methods: Consecutive women with lung biopsy proven LAM and absence of hypoxaemia while awake were evaluated with pulmonary function test, echocardiography, 6-min walk test, overnight full polysomnography, and Short Form 36 health-related quality-of-life questionnaire. Results: Twenty-five patients with (mean +/- SD) age 45 +/- 10 years, SpO(2) awake 95% +/- 2, forced expiratory volume in the first second (median-interquartile) FEV1 (% predicted) 77 (47-90) and carbonic monoxide diffusion capacity, DLCO (%) 55 (34-74) were evaluated. Six-minute walk test distance and minimum SpO(2) (median-interquartile) were, respectively, 447 m (411 -503) and 90% (82-94). Median interquartile apnoea-hypopnoea index was in the normal range 2 (1-5). Fourteen patients (56%) had nocturnal hypoxaemia (10% total sleep time with SpO(2) <90%), and the median sleep time spent with SpO(2) <90% was 136 (13-201) min. Sleep time spent with SpO(2) <90% correlated with the residual volume/total lung capacity ratio (r(s) = 0.5, p: 0.02), DLCO (r(s) = -0.7, p: 0.001), FEV1 (r(s) = -0.6, p: 0.002). Multivariate linear regression model showed that RV/TLC ratio was the most important functional variable related to sleep hypoxaemia. Conclusion: Significant hypoxaemia during sleep is common in LAM patients with normal SpO(2) while awake, especially among those with some degree of hyperinflation in lung function tests. (C) 2011 Published by Elsevier Ltd.