950 resultados para LIPID CLASS COMPOSITION
Resumo:
Despite an impressive amount of research and policy intervention no robust pattern of neighborhood effects on educational attainment has previously been identified. Adequate theoretical modeling and the sensitivity of the results to the method of the study are the major challenges in this area of research. This paper elaborates the social mechanisms of neighborhood effects and applies various methodological approaches to test them. Using data from Switzerland, the research reported here has detected heterogeneous effects of neighborhood on elementary school students’ educational achievement in Zurich. Although modest in comparison with the effects of classroom composition, these effects appear to be mediated primarily through social integration into a local peer network and are differentiated according to students’ gender and their social origin.
Resumo:
Sticholysin II (StnII) is a pore-forming toxin that uses sphingomyelin (SM) as the recognition molecule in targeting membranes.After StnII monomers bind to SM, several toxin monomers act in concert to oligomerize into a functional pore. The regulation of StnII binding to SM, and the subsequent pore-formation process, is not fully understood. In this study, we examined how the biophysical properties of bilayers, originating from variations in the SM structure, from the presence of sterol species, or from the presence of increasingly polyunsaturated glycerophospholipids,affected StnII-induced pore formation. StnII-induced pore formation, as determined from calcein permeabilization, was fastest in the pure unsaturated SM bilayers. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/saturated SM bilayers (4:1 molar ratio), pore formation became slower as the chain length of the saturated SMs increased from 14 up to 24 carbons. In the POPC/palmitoyl-SM (16:0-SM) 4:1 bilayers, SM could not support pore formation by StnII if dimyristoyl-PC was included at 1:1 stoichiometry with 16:0-SM, suggesting that free clusters of SM were required for toxin binding and/or pore formation. Cholesterol and other sterols facilitated StnII-induced pore formation markedly, but the efficiency did not appear to correlate with the sterol structure. Benzyl alcohol was more efficient than sterols in enhancing the pore-formation process, suggesting that the effect on pore formation originated from alcohol-induced alteration of the hydrogen-bonding network in the SM-containing bilayers. Finally, we observed that pore formation by StnII was enhanced in the PC/16:0-SM 4:1 bilayers, in which the PC was increasingly unsaturated. We conclude that the physical state of bilayer lipids greatly affected pore formation by StnII. Phase boundaries were not required for pore formation, although SM in a gel state attenuated pore formation.
Resumo:
Effects of a remarkably high overall lipid Tisochrysis lutea strain (T+) upon gross biochemical composition, fatty acid (FA), sterol and lipid class composition of Crassostrea gigas larvae were evaluated and compared with a normal strain of Tisochrysis lutea (T) and the diatom Chaetoceros neogracile (Cg). In a first experiment, the influence of different single diets (T, T+ and Cg) and a bispecific diet (TCg) was studied, whereas, effects of monospecific diets (T and T+) and bispecific diets (TCg and T+Cg) were evaluated in a second experiment. The strain T+ was very rich in triglycerides (TAG: 93–95% of total neutral lipids), saturated FA (45%), monounsaturated FA (31–33%) and total fatty acids (4.0–4.7 pg cell−1). Larval oyster survival and growth rate were positively correlated with 18:1n-7 and 20:1n-7, in storage lipids (SL), and negatively related to 14:0, 18:1n-9, 20:1n-9, 20:4n-6 and trans-22-dehydrocholesterol in membrane lipids (ML). Surprisingly, only the essential fatty acid 20:5n-3 in SL was correlated positively with larval survival. Correlations suggest that physiological disruption by overabundance of TAG, FFA and certain fatty acids in larvae fed T+ was largely responsible for the poor performance of these larvae. ‘High-lipid’ strains of microalgae, without regard to qualitative lipid composition, do not always improve bivalve larval performance.
Resumo:
In this study, we investigated the physiological alterations during ontogeny for cachara (Pseudoplatystoma reticulatum) and their hybrid larvae (Pseudoplatystoma corruscans x P. reticulatum) using lipids and fatty acids as physiological tools to elucidate the basis for differences in these groups' productivity in an industrial setting. Eggs and larvae samples were collected during January and February of 2008 in the city of Bandeirantes, MS, and were divided into three primary phases: phase I (0-16 h after fertilization); phase II (24 h after fertilization to 6 days after fertilization); and phase III (7-25 days after fertilization). The larvae of both groups showed a high degree of similarity, suggesting that the hybrid larvae showed a high level of heritability from the cachara broodstock. Analysis of the total lipid content provided evidence that there is no alteration in lipid concentration during ontogeny for both groups (i.e., the cachara and hybrids). However, the fatty acid profile showed that during the endogenous feeding period (phase II), when the larvae must use the energy reserves from the mother, the cachara larvae used mainly monounsaturated fatty acids for development. This is typical for most fish species, though notably, the hybrids preferentially used saturated fatty acids. Furthermore, certain specific changes demonstrate unique patterns of energy utilization and structural substrates, which may aid in elucidating the empirical differences reported by fish farmers (i.e., that the hybrids perform better than cacharas in captivity).
Resumo:
Mirocaris fortunata were sampled from the Lucky Strike hydrothermal vent area (Eiffel Tower site) on the mid-Atlantic ridge during the French DIVA 2 cruise (June 1994). Small adults (17 to 22 mm total length), although morphologically identical, could be divided into 2 categories on the basis of pigmentation, lipid composition and C-13/C-12 stable isotope ratios of fatty acids. Highly pigmented small adults (8.6 to 9.2 mu g carotenoid shrimp(-1)) contained higher levels of total lipid than similar-sized individuals containing lower levels of pigment (0.9 to 2.9 mu g carotenoid shrimp(-1)). Lipid class analysis indicated that wax esters comprised 62.5% of total lipid in the former group. These pigmented shrimp also contained high proportions of polyunsaturated fatty acids (PUFA), particularly the phototrophic microplanktonic markers 20:5(n-3) and 22:6(n-3) (14.0 and 33.5% respectively). By contrast small adults (22 mm) and adult shrimp (25 to 26 mm) with low levels of carotenoid pigmentation contained lower amounts of total lipid, little or no wax ester and low levels of 20:5(n-3) and 22:6(n-3), but did contain 16:2(n-4) and 18:2(n-4) and the non-methylene interrupted dienes 20:2 Delta 5,13 and 22:2 Delta 7,15. GC-IRMS analysis of all fatty acids and fatty alcohols in the pigmented small adults indicated delta(13)C values of -18.2 to -27.7 parts per thousand, which is consistent with a photosynthetic carbon source for these compounds. The C-13/C-12 isotope composition of fatty acids from low-pigmented small adults and adults was more variable (-12.5 to -33.1 parts per thousand) and suggests a bimodal distribution which may be attributable to differing nutritional sources or the physiological/reproductive status of these shrimp. Samples of eggs, which are carried by the female on the pleopods, represented approximately 57% of total somatic lipid which indicates a substantial reproductive investment by this species. The egg lipids comprised high proportions of triacylglycerols (64.4 to 78.0% of total lipid) whilst the fatty acid composition was dominated by the monounsaturated fatty acids 16:1(n-7), 18:1(n-7) and 18:1(n-9), which accounted for 65.7 to 33.5% of total fatty acids. By contrast, PUFA were relatively minor components of egg lipids, particularly 20:5(n-3) and 22:6(n-3), which accounted for only 1.1 and 2.9% of total egg fatty acids respectively. This indicates that the reproductive investment by this species is supported mainly by material derived from bacterial chemosynthesis. The potential for M. fortunata hedge betting by producing larvae which either metamorphose at the vent site or adopt a bathypelagic lifestyle and delay metamorphosis to facilitate more widespread dispersal is discussed.
Resumo:
Quality of newly hatched larvae (NHL) of Maja brachydactyla in captivity has been characterized throughout the year to evaluate their availability for mass production. Spawning took place every month and NHL were collected and analyzed to estimate individual dry weight (DW) and proximate biochemical composition (protein, carbohydrate and lipids). Lipid class, fatty acid composition, amino acid profile, mineral and vitamins A, E and C contents were analyzed seasonally. NHL obtained throughout the year are a potential source for aquaculture purposes, since the increment in the relative protein and lipid (especially phospholipids and n-3 PUFA) content might compensate the decrease in DW of larvae hatched from broodstock kept during one year in captivity. However, the decrease in vitamins A and E as well as in certain essential amino acids (Lys, Val, and His) and trace elements (Cu and Fe) of NHL at the end of the year might be indicative of a nutritional deficiency in broodstock diets.
Resumo:
Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1 (n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.
Resumo:
Ein discoidales Lipoprotein aus dem Polychaeten Nereis virens (Annelida) wurde eingehend charakterisiert. Im Vordergrund standen dabei die transportierten Lipide, sowie die Ultrastruktur des Partikels. Das Nereis-Lipoprotein besitzt eine für Invertebraten atypische Lipidzusammensetzung: Außer den Phospholipiden gibt es keine klar dominierende Lipidklasse. Die Charakterisierung der Apolipoproteine zeigt Gemeinsamkeiten mit den Apolipophorinen der Insekten: Wie diese besitzt das Nereis-Lipoprotein zwei Apolipoproteine, die in einer 1:1-Stöchiometrie angeordnet sind. Das größere Protein (ApoNvLp I) ist dabei stärker zum wässrigen Medium exponiert ist als das kleinere (ApoNvLp II). Beide Proteinuntereinheiten sind N-glycosyliert. ApoNvLp II ist zusätzlich noch O-glycosyliert. Bei den Sekundärstrukturen dominieren β-Strukturen (35%) gegenüber α-Helices (14%); 28% waren ungeordnete Strukturen. Die Masse wurde mit verschiedenen Methoden bestimmt: sie liegt zwischen ~800 kDa (Gelfiltration) und ~860 kDa (Analytische Ultrazentrifugation). Der Sedimentationskoeffizient beträgt 9,7 S. Der zelluläre Lipoproteinrezeptor wurde aus einer großen Anzahl von Zellen und Geweben isoliert. Die biochemische Charakterisierung des Rezeptormoleküls zeigte es als ein monomeres, integrales, N- und O-glycosyliertes Membranprotein mit einer Masse von ~114 kDa. Die Bindungscharakteristika (Abhängigkeit von Ca2+, Disulfidbrücken) weisen es als Mitglied der LDLR-Superfamilie aus. In vitro-Inkubationsversuche mit fluoreszenzmarkierten Lipoproteinen zeigten die Aufnahme sowohl in Oocyten als auch in freie Coelomzellen (Elaeocyten) sowie in Spermatogonien- und Tetradenstadien. Auffällig war, dass die Lipide zusammen mit den Apolipoproteinen in die Dottergranula der Eizellen eingelagert wurden und nicht direkt in die Lipidtropfen. Auch bei den Elaeocyten wurden die Lipide nicht direkt in den Lipidtropfen eingelagert. Intakte Lipoproteine konnten per Dichtegradienten-Ultrazentrifugation nur aus Spermatogonien isoliert werden. Die isolierten Lipoproteine hatten die gleiche ‚Morphologie’ wie die aus der Coelomflüssigkeit isolierten, zeigten jedoch sehr viele Peptidfragmente im SDS-Gel, was auf eine beginnende Degradation hinweist. Es wird ein Modell für den Lipidtransport in Nereis virens vorgeschlagen, bei dem den Elaeocyten eine entscheidende Rolle im Lipidstoffwechsel zufällt.
Resumo:
Organic-matter-rich Upper Cretaceous claystones from DSDP Hole 603B, lower continental rise, had organic carbon values ranging from 1.7 to 13.7%, C/N ratios from 32 to 72, and d13C values from -23.5 to -27.1 per mil. Lipid class maxima for the unbound alkanes (C29 and C31), unbound fatty acids (C28 and C30), and bound fatty acids (C24, C26 , and C28) and the strong odd-carbon and even-carbon preferences, respectively, suggested that the organic matter in these sediments was partially the result of input from continental plant waxes. Transport of the organic-matter-rich sediments to the deep sea from the near-shore environment probably resulted from turbiditic flow under oxygen-stressed conditions.
Resumo:
We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2-8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria.
Resumo:
Eleven sediment samples taken downcore and representing the past 26 kyr of deposition at MANOP site C (0°57.2°N, 138°57.3°W) were analyzed for lipid biomarker composition. Biomarkers of both terrestrial and marine sources of organic carbon were identified. In general, concentration profiles for these biomarkers and for total organic carbon (TOC) displayed three common stratigraphic features in the time series: (1) a maximum within the surface sediment mixed layer (<=4 ka); (2) a broad minimum extending throughout the interglacial deposit; and (3) a deep, pronounced maximum within the glacial deposit. Using the biomarker records, a simple binary mixing model is described that assesses the proportion of terrestrial to marine TOC in these sediments. Best estimates from this model suggest that ~20% of the TOC is land-derived, introduced by long-range eolian transport, and the remainder is derived from marine productivity. The direct correlation between the records for terrestrial and marine TOC with depth in this core fits an interpretation that primary productivity at site C has been controlled by wind-driven upwelling at least over the last glacial/interglacial cycle. The biomarker records place the greatest wind strength and highest primary productivity within the time frame of 18 to 22 kyr B.P. Diagenetic effects limit our ability to ascertain directly from the biomarker records the absolute magnitude that different types of primary productivity have changed at this ocean location over the past 26 kyr.
Resumo:
Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.
Resumo:
BACKGROUND & AIMS: Although the physiological effects of n-3 polyunsaturated fatty acids (n-3PUFA) are generally thought to require several weeks of exposure to allow their incorporation into plasma membranes, intravenous (IV) n-3PUFA attenuate the cardiovascular and neuroendocrine response to stress within 3 h. Whether oral n-3 PUFA exert similar early effects remains unknown. OBJECTIVE: To assess whether acute IV or short term oral n-3PUFA administration reproduces the metabolic effects of long term oral supplements during exercise, and how it relates to their incorporation into platelets and red blood cells (RBC) membranes. DESIGN: Prospective single center open label study in 8 healthy subjects receiving a 3-h infusion of 0.6 g/kg body weight n-3PUFA emulsion, followed one week later by an oral administration of 0.6 g/kg over 3 consecutive days. Maximal power output (cycling exercise), maximal heart rate (HR), blood lactate at exhaustion, and platelet function were measured at baseline and after IV or 3-day oral supplementation; platelet and RBC membrane composition were assessed until 15 days after n-3PUFA administration. RESULTS: Both IV and oral n-3PUFA significantly decreased maximal HR (-6% and -5%), maximal power output (-10%) and peak blood lactate (-47% and -52%) Platelet function tests were unchanged. The EPA and DHA membrane contents of RBC and platelets increased significantly, but only to 1.7-1.9% of fatty acid content. CONCLUSION: The cardiovascular and metabolic effects of n-3 PUFA during exercise occur already within 1-3 days of exposure, and may be unrelated to changes in membranes composition. Effects occur within hours of administration and are unrelated to lipid membrane composition. Trial registered at clinicaltrials.gov as NCT00516178.