967 resultados para LIGAND DOMAIN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBP(II)), which is the most variable segment of the protein. Methods: To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBP(II) in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBP(II), and T-and B-cell epitopes were localized on the 3-D structure. Results: The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBP(II), and (ii) PvDBP(II) appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions: This study shows that some polymorphisms of PvDBP(II) are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Certain extracellular proteases, derived from the circulation and inflammatory cells, can specifically cleave and trigger protease-activated receptors (PARs), a small, but important, sub-group of the G-protein-coupled receptor super-family. Four PARs have been cloned and they all share the same basic mechanism of activation: proteases cleave at a specific site within the extracellular N-terminus to expose a new N-terminal tethered ligand domain, which binds to and thereby activates the cleaved receptor. Thrombin activates PAR1, PAR3 and PAR4, trypsin activates PAR2 and PAR4, and mast cell tryptase activates PAR2 in this manner. Activated PARs couple to signalling cascades that affect cell shape, secretion, integrin activation, metabolic responses, transcriptional responses and cell motility. PARs are 'single-use' receptors: proteolytic activation is irreversible and the cleaved receptors are degraded in lysosomes. Thus, PARs play important roles in 'emergency situations', such as trauma and inflammation. The availability of selective agonists and antagonists of protease inhibitors and of genetic models has generated evidence to suggests that proteases and their receptors play important roles in coagulation, inflammation, pain, healing and protection. Therefore, selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role ill Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey ill the Brazilian Amazon Basin. Despite Continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the Population was reexamined 12 months later. Antibodies from 16 of 50 (360%) Subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by Multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Duffy binding protein of Plasmodium vivax (DBP) is a critical adhesion ligand that participates in merozoite invasion of human Duffy-positive erythrocytes. A small outbreak of P. vivax malaria, in a village located in a non-malarious area of Brazil, offered us an opportunity to investigate the DBP immune responses among individuals who had their first and brief exposure to malaria. Thirty-three individuals participated in the five cross-sectional surveys, 15 with confirmed P. vivax infection while residing in the outbreak area (cases) and 18 who had not experienced malaria (non-cases). In the present study, we found that only 20% (three of 15) of the individuals who experienced their first P. vivax infection developed an antibody response to DBP; a secondary boosting can be achieved with a recurrent P. vivax infection. DNA sequences from primary/recurrent P. vivax samples identified a single dbp allele among the samples from the outbreak area. To investigate inhibitory antibodies to the ligand domain of the DBP (cysteine-rich region II, DBP(II)), we performed in vitro assays with mammalian cells expressing DBP(II) sequences which were homologous or not to those from the outbreak isolate. In non-immune individuals, the results of a 12-month follow-up period provided evidence that naturally acquired inhibitory antibodies to DBP(II) are short-lived and biased towards a specific allele.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) a leading malaria vaccine candidate in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBPII) within the local malaria parasite population. Methods Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBPII. Results The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subjects age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBPII diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. Conclusion The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBPII diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is a goal of cancer chemotherapy to achieve the selective killing of tumor cells while minimizing toxicity to normal tissues. We describe the design of selective toxins forming DNA adducts that attract the estrogen receptor (ER), a transcription factor that is overexpressed in many human breast and ovarian tumors. The compounds consist of 4-(3-aminopropyl)-N,N-(2-chloroethyl)-aniline linked to 2-(4′-hydroxyphenyl)-3-methyl-5-hydroxy-indole. The former moiety is a DNA damaging nitrogen mustard and the latter is a ligand for the ER. The connection between these groups was refined to permit DNA adducts formed by the mustard portion of the molecule to present the ligand domain so that it was able to interact efficiently with the ER. By using 16-mers containing specific DNA adducts, it was determined that monoadducts and putative intrastrand crosslinks were preferred targets for the ER over interstrand crosslinks. A series of structurally related 2-phenylindole mustards was prepared, some of which were selectively toxic to the ER-positive breast cancer cell line MCF-7, as compared with the ER(−) negative line MDA-MB231. The ability both to bind to DNA and to interact significantly with the ER were essential to achieve selective lethality toward ER(+) cells. Compounds forming DNA adducts without the ability to bind receptor showed similar toxicities in the two cell lines. Several models could explain the selective toxicity of the mustard–phenylindole compounds toward ER(+) cells. The favored model suggests that a mustard–DNA adduct is shielded by the ER from DNA repair enzymes and hence cells possessing an abundance of the ER selectively retain the adduct and are killed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Mutations in the ligand-binding domain (LBD) of NR2E3 cause recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), Goldmann-Favre syndrome (GFS) and clumped pigmentary retinal degeneration (CPRD). In addition to ligand binding, the LBD contains also essential amino acid sequences for the oligomerization of nuclear receptors. The aim of our studies is to characterize the impact of mutations in the LBD on receptor oligomerization and transcriptional activity of NR2E3. Methods: The different NR2E3 mutants were generated by QuickChange mutagenesis and analyzed in 293T-based transactivation studies and BRET2 (bioluminescence resonance electron transfer) assays. In silico homology modeling of mutant proteins was also performed using available crystallographic data of related nuclear receptors. Results: The mutants p.W234S, p.A256V, p.A256E, p.L263P, p.R309G, p.R311Q, p.R334G, p.L336P, p.L353V, p.R385P and p.M407K, all located in the LBD, showed impaired receptor dimerization at various degrees. Impaired repressor dimerization as assessed by BRET2 assays did not always correlate with impaired repressor function of NR2E3 as assessed by cell-based reporter assays. There were minor differences of transcriptional activity of mutant proteins on mouse S-opsin (opn1sw), mouse cone arrestin (arr3) and human cone arrestin, suggesting that the effect of LBD mutations was independent of the promoter context. Conclusions: Mutational analysis and homology modeling allowed the characterization of potential oligomerization interfaces of the NR2E3 LBD. Additionally, mutations in NR2E3 LBD may cause recessive retinal degenerations by different molecular mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARY BACKGROUND: P-selectin glycoprotein ligand 1 (PSGL-1) is a major selectin ligand, mediating leukocyte rolling along inflamed vascular wall. It is a mucin-like homodimer composed of a N-terminal domain which binds selectins, followed by 14-16 decameric repeats (DR), a transmembrane domain and a cytoplasmic tail, which may be involved in regulating leukocyte rolling and in generating intracellular signals, through its binding to moesin and Syk. P- and L-selectin binding is dependent on core-2 O-glycosylation and tyrosine sulfation of PSGL-1 N-terminus. However, a minor part of E-selectin-mediated rolling is dependent on N-terminal O-glycans; additional binding sites may thus be involved. In this project, we studied whether (1) PSGL-1 DR and (2) PSGL-1 cytoplasmic residues which bind moesin, were also involved in the regulation of selectin-dependent rolling. METHODS: Several mutated cDNAs were obtained: (1) PSGL-1 DR were either deleted, or substituted by platelet GPlba macroglycopeptide, (2) Ser-336, -348, Lys-337 and Arg-338 were mutated to alanine; moreover, truncation mutants retaining only 6 or 2 cytoplasmic residues were also generated. Transfected CHO expressing mutant PSGL-1 were tested for their ability to bind soluble selectin chimeras and to support selectin-dependent rolling under flow conditions. RESULTS: (1) Deletion of the DR had a dramatic effect on P- and L-selectin-dependent cell recruitment and rolling stability, which could only partially be compensated for, by GPlba substitution. In addition, we observed that DR create a binding site for E-selectin and thus support PSGL-1-dependent rolling. (2) Flow assays revealed that the moesin-binding site, in particular Ser-336, plays a crucial role in regulating the recruitment, velocity and rolling stability of PSGL-1-expressing cells on P- and L-selectin. CONCLUSIONS: Data presented here highlight the structure -function relationship of PSGL-1 DR. Moreover, they reveal a crucial role for the moesin-binding residues in regulating P-and L-selectin-dependent rolling. RÉSUMÉ CONTEXTE: PSGL-1 (P-selectin glycoprotein ligand 1) est un ligand majeur des sélectines permettant le roulement des leucocytes le long de la paroi vasculaire enflammée. C'est un homodimère de type mucine, composé d'un domaine N-terminal liant les sélectines, suivi de 14-16 répétitions décamèriques (RD), d'un domaine transmembranaire et d'une queue cytoplasmique qui pourrait être impliquée dans la régulation du roulement leucocytaire et la génération de signaux intracellulaires, via sa liaison à la moésine et à Syk. La liaison à la Pet à la L-sélectine dépend de la présentation par le N-terminus de PSGL-1 de O-glycans sur des structures core-2 et de tyrosines sulfatées. Cependant, une fraction mineure du roulement médié par la E-sélectine dépend des O-glycans N-terminaux; des sites de liaisons supplémentaires pourraient donc être impliqués. Dans ce projet, nous avons étudié si (1) les RD de PSGL-1 ainsi que (2) les résidus cytoplasmiques liant la moésine, étaient impliqués dans la régulation du roulement dépendant des sélectines. MÉTHODES: Plusieurs ADN codant des formes mutées de PSGL-1 ont été obtenus: (1) Les RD de PSGL-1 ont été soit ôtées, soit remplacées par le macroglycopeptide de la GPlba plaquettaire, (2) les Ser-336, -348, la Lys-337 et l'Arg-338 ont été mutées en alanine; par ailleurs, des mutants tronqués ne retenant plus que 6 ou 2 résidus cytoplasmiques ont également été générés. Des CHO transfectées exprimant PSGL-1 muté ont été testées pour leur capacité à lier des sélectines chimériques solubles et à soutenir un roulement dépendant des sélectines dans des conditions de flux. RÉSULTATS: (1) La perte des RD a eu un effet dramatique sur le recrutement cellulaire et la stabilité de roulement dépendant des P- et L-sélectine, qui n'a pu être que partiellement compensé par la substitution par la GPlba. De plus, nous avons observé que les RD forment un site de liaison pour la E-sélectine et soutiennent ainsi le roulement dépendant de PSGL-1. (2) Les tests de flux ont révélé que le site de liaison à la moésine, notamment la Ser-336, joue un rôle crucial dans la régulation du recrutement, de la vitesse et de la stabilité du roulement des cellules exprimant PSGL-1 sur les P- et L-sélectine. CONCLUSIONS; Les données présentées ici ont permis d'éclaircir la relation structure -fonction des RD de PSGL-1. Par ailleurs, elles révèlent un rôle crucial pour les résidus liant la moésine dans le roulement dépendant des P- et L-sélectine. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC Pour accomplir ses fonctions, le sang circule sur un réseau de 96'000 kilomètres; ainsi, il approvisionne les cellules de l'organisme en énergie, il transporte diverses substances, il assure la défense contre les pathogènes et il participe à la régulation de la température corporelle. Le sang contient plusieurs types de cellules: la grande majorité sont les globules rouges, auxquels il faut ajouter les plaquettes (dont le rôle est de colmater les lésions vasculaires) et les globules blancs (leucocytes) qui, bien que présents en très faible quantité (moins de 0.01 %), jouent un rôle crucial en cas d'infection ou d'inflammation. Une attaque par un pathogène provoque plusieurs changements (rougeur, chaleur, gonflement, douleur), qui sont des manifestations de l'inflammation. Pour atteindre l'agent infectieux, des globules blancs spécialisés (les granulocytes) doivent quitter la circulation sanguine. Afin de faciliter leur capture, les vaisseaux sanguins vont exprimer des protéines telles que les sélectines, qui sont reconnues par une protéine leucocytaire appelée PSGL-1 (P-selectin glycoprotein ligand 7). L'interaction des sélectines avec PSGL-1 soutient le roulement du globule blanc le long de la paroi vasculaire, à une vitesse très inférieure à celle du flux sanguin. Ce roulement conduit à l'activation du globule blanc par des molécules de l'inflammation, permettant son adhésion ferme, puis son arrêt. Finalement, le granulocyte va migrer à travers la paroi du vaisseau pour atteindre et éliminer les causes de l'inflammation. L'adhésion est un processus intéressant à caractériser, car outre l'inflammation, il est également impliqué dans l'artériosclérose, l'infarctus, la métastatisation et la thrombose. Dans ce travail, nous nous sommes intéressés à définir les rôles des différents domaines de PSGL-1 dans la régulation de son interaction avec les sélectines. En effet, en plus de son extrémité extracellulaire de haute affinité pour les sélectines, PSGL-1 est composé de plusieurs séquences répétées hautement glycosylées et d'une courte région intracellulaire, dont les fonctions n'avaient pas été étudiées auparavant. En créant des formes mutées de PSGL-1, nous avons pu montrer qu'un roulement efficace des leucocytes nécessite la présence des régions répétitives et du domaine intracellulaire au complet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NR2E3 encodes the photoreceptor-specific nuclear hormone receptor that acts as a repressor of cone-specific gene expression in rod photoreceptors, and as an activator of several rod-specific genes. Recessive variants located in the ligand-binding domain (LBD) of NR2E3 cause enhanced short wavelength sensitive- (S-) cone syndrome (ESCS), a retinal degeneration characterized by an excess of S-cones and non-functional rods. We analyzed the dimerization properties of NR2E3 and the effect of disease-causing LBD missense variants by bioluminescence resonance energy transfer (BRET(2) ) protein interaction assays. Homodimerization was not affected in presence of p.A256V, p.R039G, p.R311Q, and p.R334G variants, but abolished in presence of p.L263P, p.L336P, p.L353V, p.R385P, and p.M407K variants. Homology modeling predicted structural changes induced by NR2E3 LBD variants. NR2E3 LBD variants did not affect interaction with CRX, but with NRL and rev-erbα/NR1D1. CRX and NRL heterodimerized more efficiently together, than did either with NR2E3. NR2E3 did not heterodimerize with TLX/NR2E1 and RXRα/NR2C1. The identification of a new compound heterozygous patient with detectable rod function, who expressed solely the p.A256V variant protein, suggests a correlation between LBD variants able to form functional NR2E3 dimers and atypical mild forms of ESCS with residual rod function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.