888 resultados para Knowledge representation (Information theory)
Resumo:
Includes bibliographical references and index.
Resumo:
Includes bibliographical references and index.
Resumo:
Includes bibliographical references and index.
Resumo:
Entrevista a Marcia J. Bates a la University od California at Los Angeles i experta en sistemes de recuperació de la Informació orientats a l'usuari i en representació del contingut i accés per matèries. Es parla de l'evolució de les tecnologies i l'automatització de tasques que requereixen la capacitat de raonament de la persona, del comportament de l'usuari quan cerca per matèries, de la formació en competències en el maneig de la informació, de la necessitat del context en la indexació i la recuperació per matèries, i l'empatia en les relacions entre bibliotecaris i usuaris.
Resumo:
Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases.
Resumo:
Since its emergence as a discipline, in the nineteenth century (1889), the theory and practice of Archival Science have focused on the arrangement and description of archival materials as complementary and inseparable nuclear processes that aim to classify, to order, to describe and to give access to records. These processes have their specific goals sharing one in common: the representation of archival knowledge. In the late 1980 a paradigm shift was announced in Archival Science, especially after the appearance of the new forms of document production and information technologies. The discipline was then invited to rethink its theoretical and methodological bases founded in the nineteenth century so it could handle the contemporary archival knowledge production, organization and representation. In this sense, the present paper aims to discuss, under a theoretical perspective, the archival representation, more specifically the archival description facing these changes and proposals, in order to illustrate the challenges faced by Contemporary Archival Science in a new context of production, organization and representation of archival knowledge.
Resumo:
Current database technologies do not support contextualised representations of multi-dimensional narratives. This paper outlines a new approach to this problem using a multi-dimensional database served in a 3D game environment. Preliminary results indicate it is a particularly efficient method for the types of contextualised narratives used by Australian Aboriginal peoples to tell their stories about their traditional landscapes and knowledge practices. We discuss the development of a tool that complements rather than supplants direct experience of these traditional knowledge practices.
Resumo:
An ontological representation of buyer interests’ knowledge in process of e-commerce is proposed to use. It makes it more efficient to make a search of the most appropriate sellers via multiagent systems. An algorithm of a comparison of buyer ontology with one of e-shops (the taxonomies) and an e-commerce multiagent system are realised using ontology of information retrieval in distributed environment.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.
Resumo:
Characteristics of speech, especially figures of speech, are used by specific communities or domains, and, in this way, reflect their identities through their choice of vocabulary. This topic should be an object of study in the context of knowledge representation once it deals with different contexts of production of documents. This study aims to explore the dimensions of the concepts of euphemism, dysphemism, and orthophemism, focusing on the latter with the goal of extracting a concept which can be included in discussions about subject analysis and indexing. Euphemism is used as an alternative to a non-preferred expression or as an alternative to an offensive attribution-to avoid potential offense taken by the listener or by other persons, for instance, pass away. Dysphemism, on the other hand, is used by speakers to talk about people and things that frustrate and annoy them-their choice of language indicates disapproval and the topic is therefore denigrated, humiliated, or degraded, for instance, kick the bucket. While euphemism tries to make something sound better, dysphemism tries to make something sound worse. Orthophemism (Allan and Burridge 2006) is also used as an alternative to expressions, but it is a preferred, formal, and direct language of expression when representing an object or a situation, for instance, die. This paper suggests that the comprehension and use of such concepts could support the following issues: possible contributions from linguistics and terminology to subject analysis as demonstrated by Talamo et al. (1992); decrease of polysemy and ambiguity of terms used to represent certain topics of documents; and construction and evaluation of indexing languages. The concept of orthophemism can also serves to support associative relationships in the context of subject analysis, indexing, and even information retrieval related to more specific requests.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Resumo:
This paper gives an insight into cognitive computing for smart cities, resulting in cognitive cities. Cognitive cities and cognitive computing research with the underlying concepts of knowledge graphs and fuzzy cognitive maps are presented and supported by existing tools (i.e., IBM Watson and Google Now) and intended tools (meta-app). The paper illustrates FCM as a suiting instrument to represent information/knowledge in a city environment driven by human-technology interaction, enforcing the concept of cognitive cities. A proposed paper prototype combines the findings of the paper and shows the next step in the implementation of the proposed meta-app.
Resumo:
In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.