984 resultados para Kirchhoff integral


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho tem por objetivo a aplicação de um método de migração com amplitudes verdadeiras, considerando-se um meio acústico onde a velocidade de propagação varia linearmente com a profundidade. O método de migração é baseado na teoria dos raios e na integral de migração de Kirchhoff, procurando posicionar de forma correta os refletores e recuperar os respetivos coeficientes de reflexão. No processo de recuperação dos coeficientes de reflexão, busca-se corrigir o fator de espalhamento geométrico de reflexões sísmicas primárias, sem o conhecimento a priori dos refletores procurados. Ao considerar-se configurações fonte-receptor arbitrárias, as reflexões primárias podem ser imageadas no tempo ou profundidade, sendo as amplitudes do campo de ondas migrado uma medida dos coeficientes de reflexão (função do ângulo de incidência). Anteriormente têm sido propostos alguns algoritmos baseados na aproximação de Born ou Kirchhoff. Todos são dados em forma de um operador integral de empilhamento de difrações, que são aplicados à entrada dos dados sísmicos. O resultado é uma seção sísmica migrada, onde cada ponto de reflexão é imageado com uma amplitude proporcional ao coeficiente de reflexão no ponto. No presente caso, o processo de migração faz uso de um modelo com velocidade que apresenta uma distribuição que varia linearmente com a profundidade, conhecido também como gradiente constante de velocidade. O esquema de migração corresponde a uma versão modificada da migração de empilhamento por difração e faz uso explícito da teoria do raio, por exemplo, na descrição de tempos de trânsito e amplitudes das reflexões primárias, com as quais a operação de empilhamento e suas propriedades podem ser entendidas geometricamente. Efeitos como o espalhamento geométrico devido à trajetória do raio levam a distorção das amplitudes. Estes efeitos têm que ser corregidos durante o processamento dos dados sísmicos. Baseados na integral de migração de Kirchhoff e na teoria paraxial dos raios, foi derivada a função peso e o operador da integral por empilhamento de difrações para um modelo sísmico 2,5-D, e aplicado a uma serie de dados sintéticos em ambientes com ruído e livre de ruído. O resultado mostra a precisão e estabilidade do método de migração em um meio 2,5-D como ferramenta para obter informação sobre as propriedades de refletividade da subsuperfície da terra. Neste método não são levados em consideração a existência de caústicas nem a atenuação devido a fricção interna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A teoria dos feixes gaussianos foi introduzida na literatura sísmica no início dos anos 80 por pesquisadores russos e tchecos, e foi originalmente utilizada no cálculo do campo de ondas eletromagnéticas, baseado na teoria escalar da difração. Na teoria dos feixes gaussianos, o campo de ondas sísmicas é obtido por uma integral, cujo o integrando é constituído de duas partes, a saber: (1) as amplitudes dos campos das ondas na vizinhança do ponto de observação e (2) a função fase de cada um desses campos de ondas, que neste caso é representada por um tempo de trânsito paraxial complexo. Como ferramenta de imageamento, mais precisamente como operador de migração, os primeiros trabalhos usando feixes gaussianos datam do final da década de 80 e início dos anos 90. A regularidade dos campos de ondas descritos pelos feixes gaussianos, além de sua alta precisão em regiões singulares do modelo de velocidades, tornaram o uso de feixes gaussianos como uma alternativa híbrida viável para a migração. Nesse trabalho, unimos a flexibilidade da migração tipo Kirchhoff em profundidade em verdadeira amplitude com a regularidade da descrição do campo de ondas, representado pela sobreposição de feixes gaussianos. Como forma de controlar de forma estável quantidades usadas na construção de feixes gaussianos, utilizamos informações advindas do volume de Fresnel, mais precisamente a zona de Fresnel ao redor do ponto de reflexão e a zona de Fresnel projetada, localizada ao redor do ponto de registro do sismograma e cuja a informação se encontra nas curvas de reflexão de dados sísmico. Nosso processo de migração pode ser chamado como uma migração Kirchhoff em verdadeira amplitude usando um operador de feixes gaussianos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O método de migração do tipo Kirchhoff se apresenta na literatura como uma das ferramentas mais importantes de todo o processamento sísmico, servindo de base para a resolução de outros problemas de imageamento, devido ao um menor custo computacional em relação aos métodos que tem por base a solução numérica da equação da onda. No caso da aplicação em três dimensões (3D), mesmo a migração do tipo Kirchhoff torna-se dispendiosa, no que se refere aos requisitos computacionais e até mesmo numéricos para sua efetiva aplicação. Desta maneira, no presente trabalho, objetivando produzir resultados com uma razão sinal/ruído maior e um menor esforço computacional, foi utilizado uma simplificação do meio denominado 2.5D, baseado nos fundamentos teóricos da propagação de feixes gaussianos. Assim, tendo como base o operador integral com feixes gaussianos desenvolvido por Ferreira e Cruz (2009), foi derivado um novo operador integral de superposição de campos paraxiais (feixes gaussianos), o mesmo foi inserido no núcleo do operador integral de migração Kirchhoff convencional em verdadeira amplitude, para a situação 2,5D, definindo desta maneira um novo operador de migração do tipo Kirchhoff para a classe pré-empilhamento em verdadeira amplitude 2.5D (KGB,do inglês Kirchhoff-Gausian-Beam). Posteriormente, tal operador foi particularizado para as configurações de medida afastamento comum (CO, do inglês common offset) e ângulo de reflexão comum (CA, do inglês common angle), ressaltando ainda, que na presente Tese foi também idealizada uma espécie de flexibilização do operador integral de superposição de feixes gaussianos, no que concerne a sua aplicação em mais de um domínio, quais sejam, afastamento comum e fonte comum. Nesta Tese são feitas aplicações de dados sintéticos originados a partir de um modelo anticlinal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa no imageamento sísmicos. Nesta dissertação, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB).Afim de comparar os métodos Kirchhoff e KGB com respeito à sensibilidade em relação ao comprimento da discretização, aplicamos no conjunto de dados conhecido como Marmousi 2-D quatro grids de velocidade, ou seja, 60m, 80m 100m e 150m. Como resultado, temos que ambos os métodos apresentam uma imagem muito melhor para o menor intervalo de discretização da malha de velocidade. O espectro de amplitude das seções migradas nos fornece o conteúdo de frequência espacial das seções das imagens obtidas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Partially supported by Grant MM523/95 with Ministry of Science and Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'integral theory of pelvic floor dysfunction', first proposed by Petros and Ulmsten in 1990, claims that anterior vaginal wall relaxation is associated with symptoms of urgency, frequency, nocturia and urge incontinence. A retrospective study was designed to test this hypothesis. Imaging data and urodynamic reports from 272 women suffering from symptoms of lower urinary tract dysfunction were evaluated. Opening of the retrovesical angle, bladder neck descent, urethral rotation and descent of a cystocele during Valsalva were used to quantify anterior vaginal wall laxity None of the tested parameters were associated with symptoms and signs of detrusor overactivity. On the contrary, patients with higher grades of urethral and bladder descent were less likely to suffer from nocturia and urge incontinence and were less likely to leave sensory urgency and detrusor instability diagnosed on urodynamic testing. The findings of this study therefore do not support this hypothesis of the 'integral theory'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.