905 resultados para Integral Representations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: Primary 33C45, 40A30; Secondary 26D07, 40C10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article discusses three possible ways to derive time domain boundary integral representations for elastodynamics. This discussion points out possible difficulties found when using those formulations to deal with practical applications. The discussion points out recommendations to select the convenient integral representation to deal with elastodynamic problems and opens the possibility of deriving simplified schemes. The proper way to take into account initial conditions applied to the body is an interesting topict shown. It illustrates the main differences between the discussed boundary integral representation expressions, their singularities and possible numerical problems. The correct way to use collocation points outside the analyzed domain is carefully described. Some applications are shown at the end of the paper, in order to demonstrate the capabilities of the technique when properly used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work deals with nonlinear geometric plates in the context of von Karman`s theory. The formulation is written such that only the boundary in-plane displacement and deflection integral equations for boundary collocations are required. At internal points, only out-of-plane rotation, curvature and in-plane internal force representations are used. Thus, only integral representations of these values are derived. The nonlinear system of equations is derived by approximating all densities in the domain integrals as single values, which therefore reduces the computational effort needed to evaluate the domain value influences. Hyper-singular equations are avoided by approximating the domain values using only internal nodes. The solution is obtained using a Newton scheme for which a consistent tangent operator was derived. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the problem of propagation from a monofrequency coherent line source above a plane of homogeneous surface impedance. The solution of this problem occurs in the kernel of certain boundary integral equation formulations of acoustic propagation above an impedance boundary, and the discussion of the paper is motivated by this application. The paper starts by deriving representations, as Laplace-type integrals, of the solution and its first partial derivatives. The evaluation of these integral representations by Gauss-Laguerre quadrature is discussed, and theoretical bounds on the truncation error are obtained. Specific approximations are proposed which are shown to be accurate except in the very near field, for all angles of incidence and a wide range of values of surface impedance. The paper finishes with derivations of partial results and analogous Laplace-type integral representations for the case of a point source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relation showing that the Grünwald-Letnikov and generalized Cauchy derivatives are equal is deduced confirming the validity of a well known conjecture. Integral representations for both direct and reverse fractional differences are presented. From these the fractional derivative is readily obtained generalizing the Cauchy integral formula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This analysis paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory and the theory of stochastic processes. Specifically, we establish new asymptotic properties of the particular Wright function 1Ψ1(ρ, k; ρ, 0; x) = X∞ n=0 Γ(k + ρn) Γ(ρn) x n n! (|x| < ∞) when the parameter ρ ∈ (−1, 0)∪(0, ∞) and the argument x is real. In the probability theory applications, which are focused on studies of the Poisson-Tweedie mixtures, the parameter k is a non-negative integer. Several representations involving well-known special functions are given for certain particular values of ρ. The asymptotics of 1Ψ1(ρ, k; ρ, 0; x) are obtained under numerous assumptions on the behavior of the arguments k and x when the parameter ρ is both positive and negative. We also provide some integral representations and structural properties involving the ‘reduced’ Wright function 0Ψ1(−−; ρ, 0; x) with ρ ∈ (−1, 0) ∪ (0, ∞), which might be useful for the derivation of new properties of members of the power-variance family of distributions. Some of these imply a reflection principle that connects the functions 0Ψ1(−−;±ρ, 0; ·) and certain Bessel functions. Several asymptotic relationships for both particular cases of this function are also given. A few of these follow under additional constraints from probability theory results which, although previously available, were unknown to analysts.