959 resultados para Insect Pollination
Resumo:
Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we show that it is critically important to consider all production parameters including quality, varietal differences and management costs when valuing the pollination service of any crop so investment in pollinator management can be proportional to its contribution.
Resumo:
Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.
Resumo:
Apple production in the UK is worth over £100 million per annum and this production is heavily dependent on insect pollination. Despite its importance, it is not clear which insect pollinators carry out the majority of this pollination. Furthermore, it is unknown whether current UK apple production, in terms of both yield and quality, suffers pollination deficits and whether production value could be increased through effective management of pollination services. The present study set out to address some of these unknowns and showed that solitary bee activity is high in orchards and that they could be making a valuable contribution to pollination. Furthermore, fruit set and apple seed number were found to be suffering potential pollination deficits although these were not reflected in apple quality. Deficits could be addressed through orchard management practices to improve the abundance and diversity of wild pollinators. Such practices include provision of additional floral resources and nesting habitats as well as preservation of semi-natural areas. The cost effectiveness of such strategies would need to be understood taking into account the potential gains to the apple industry.
Resumo:
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Resumo:
Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Resumo:
Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.
Resumo:
Studies on the pollination biology of Eriocaulaceae are scarce although particularly interesting because of its inclusion in the Poales, a predominantly wind-pollinated order. The pollination biology of Syngonanthus elegans (Bong.) Ruhland was studied during two annual flowering periods to test the hypothesis that insect pollination was its primary pollination system. A field study was carried out, including observations of the morphology and biology of the flowers, insect visits and pollinator behaviour. We also evaluated seed set, seed germination and seedling development for different pollination modes. Although seeds were produced by self-pollination, pollination by small insects contributed most effectively to the reproductive success of S. elegans, resulting in the greatest seed set, with the highest germination percentage and optimum seedling vigour. The. oral resources used by flower visitors were pollen and nectar that was produced by staminate and pistillate flowers. Self-pollination played a minor role and its consequence was inbreeding depression.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Experiments carried out to investigate the reproductive ecology of the Australian cycad Lepidozamia peroffskyana (Regal, Bull. Soc. Imp. Nat. Mosc. 1857, 1: 184) revealed that this species is pollinated exclusively by host-specific Tranes weevils (Pascoe 1875). The weevils carry out their life cycle within the tissues of the male cones but also visit the female cones in large numbers. Female cones from which insects ( but not wind) were excluded had a pollination rate that was essentially zero. In contrast, female cones from which wind ( but not insects) were excluded had a pollination rate comparable with naturally pollinated cones. Assessment of Tranes weevil pollen load indicated that they are effective pollen-carriers. No other potential insect pollinators were observed on cones of L. peroffskyana. Sampling of airborne loads of cycad pollen indicated that wind-dispersed grains were not consistently recorded beyond a 2-m radius surrounding pollen-shedding male cones. The airborne load of cycad pollen in the vicinity of pollination-receptive female cones was minimal, and the spatial distribution of the coning population indicated that receptive female cones did not usually occur close enough to pollen-shedding male cones for airborne transfer of pollen to explain observed natural rates of seed set. These multiple lines of evidence suggest that wind-once considered the only pollination vector for cycads and other gymnosperms-plays only a minimal role in the pollination of L. peroffskyana, if any at all. The global diversity of insects associated with cycads suggests that some lineages of pollinating beetles may have been associated with cycad cones since Mesozoic times.
Resumo:
Complementary field and laboratory tests confirmed and quantified the pollination abilities of Tranes sp. weevils and Cycadothrips chadwicki thrips, specialist insects of their respective cycad hosts, Macrozamia machinii and M. lucida. No agamospermous seeds were produced when both wind and insects were excluded from female cones; and the exclusion of wind-vectored pollen alone did not eliminate seed set, because insects were able to reach the cone. Based on enclosure pollination tests, each weevil pollinates an average 26.2 ovules per cone and each thrips 2.4 ovules per cone. These pollinators visited similar numbers of ovules per cone in fluorescent dye tests that traced insect movement through cones. Fluorescent dye granules deposited by Cycadothrips were concentrated around the micropyle of each visited ovule, the site of pollen droplet release, where pollen must be deposited to achieve pollination. In contrast, Tranes weevils left dye scattered on different areas of each visited ovule, indicating that chance plays a greater role in this system. Each weevil and 25 thrips delivered 6.2 and 5.2 pollen grains, respectively, on average, to each visited ovule per cone, based on examination of dissected pollen canals. In sum, the pollination potential of 25 Cycadothrips approximates that of one Tranes weevil.
Resumo:
Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.
Resumo:
Hyönteispölytys lisää monien ristipölytteisten viljelykasvien siemensatoa sekä parantaa sadon laatua. Marjakasveilla, kuten mansikalla ja vadelmalla marjojen koko suurenee sekä niiden laatu paranee onnistuneen pölytyksen seurauksena. Aiempien havaintojen mukaan mansikan kukat eivät pääsääntöisesti houkuttele mehiläisiä, kun taas vadelma on yksi mehiläisten pääsatokasveista. Tutkimuksen tarkoituksena oli selvittää, miten tehokkaasti mehiläiset vierailevat mansikalla sekä vadelmalla, keskittyen kukkakohtaisiin käynteihin tuntia kohti. Mehiläisiä voidaan käyttää Gliocladium catenulatum-vektoreina torjuttaessa mansikan ja vadelman harmaahometta (Botrytis cinerea). Kukkavierailujen perusteella arvioidaan, onko vektorilevitys riittävän tehokas torjumaan harmaahometta ja miten hyvin mehiläisiä voidaan käyttää pölytyspalveluihin, etenkin mansikalla. Havainnot kerättiin kuudelta eri tilalta Sisä-Savosta kesällä 2007. Kukkavierailuja laskettiin mansikan ja vadelman kukinnan aikana erilaisissa sääolosuhteissa, eri kellonaikoina ja eri etäisyyksillä mehiläispesistä. Kukat valittiin satunnaisesti, ja valintaperusteena oli kukan avonaisuus. Tarkkailuaika riippui mehiläisten lentoaktiivisuudesta. Mansikan koko havaintojakson keskiarvoksi tuli 1,75 käyntiä kukkaa kohti tunnissa. Vadelmalla vastaava luku oli 4,27, joten keskiarvojen perusteella vadelma oli houkuttelevampi kuin mansikka. Kasvukauden vaiheella ei ollut eroja vierailuihin kummallakaan kasvilla, mutta vuorokaudenajan suhteen vierailuja oli enemmän aamupäivällä kuin iltapäivällä. Lämpötila korreloi positiivisesti vierailutiheyden kanssa kummallakin kasvilla. Sääolosuhteet rajoittivat havaintojen keräämistä ja kesä oli erittäin sateinen. Mehiläiset vierailivat kukissa riittävästi haastavissakin sääolosuhteissa niin, että harmaahometorjunta onnistui. Vektorilevitystä suunnitellessa, etenkin mansikalla, tulee ottaa huomioon pesien sijoittelu sekä riittävä lukumäärä. Pesien ravinnontarpeen tulee olla suuri, jotta mehiläiset keräisivät ravintoa kukista mahdollisimman tehokkaasti. Pesiin voidaan lisätä tarvittaessa avosikiöitä tai poistaa siitepölyvarastoja ravinnonkeruuaktiivisuuden lisäämiseksi. Lisätutkimusta tarvitaan pesien sijoittelun, kilpailevien kasvien sekä mansikkalajikkeiden houkuttelevuuden vaikutuksesta vierailutiheyteen. Suomalaisten mansikkalajikkeiden meden sekä siitepölyneritystä olisi myös hyvä selvittää.
Resumo:
Pollination services are economically important component of agricultural biodiversity which enhance the yield and quality of many crops. An understanding of the suitability of extant habitats for pollinating species is crucial for planning management actions to protect and manage these service providers. In a highly modified agricultural ecosystem, we tested the effect of different pollination treatments (open, autonomous self- and wind-pollination) on pod set, seed set, and seed weight in field beans (Vicia faba). We also investigated the effect of semi-natural habitats and flower abundance on pollinators of field beans. Pollinator sampling was undertaken in ten field bean fields along a gradient of habitat complexity; CORINE land cover classification was used to analyse the land use patterns between 500–3000 m around the sites. Total yield from open-pollination increased by 185% compared to autonomous self-pollination. There was positive interactive effect of local flower abundance and cover of semi-natural habitats on overall abundance of pollinators at 1500 and 2000 m, and abundance of bumblebees (Bombus spp.) at 1000–2000 m. In contrast, species richness of pollinators was only correlated with flower abundance and not with semi-natural habitats. We did not find a link between pod set from open-pollination and pollinator abundance, possibly due to variations in the growing conditions and pollinator communities between sites. We conclude that insect pollination is essential for optimal bean yields and therefore the maintenance of semi-natural habitats in agriculture-dominated landscapes should ensure stable and more efficient pollination services in field beans.