963 resultados para Indium Sulfide
Resumo:
Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.
Resumo:
With the assistance of urea, uniform 2D nanoflakes assembled 3D In2S3 microflowers were synthesized via a facile hydrothermal method at relative low temperature. The properties of the as-obtained In2S3 flowers were characterized by various techniques. In this work, the utilization of urea and L-cysteine, as well as the amount of them played important roles in the formation of In2S3 with different nanostructures. Inferred from their morphology evolution, a urea induced precursor-decomposition associated with the Ostwald-ripening mechanism was proposed to interpret these hierarchical structure formation.
Resumo:
In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.
Resumo:
The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.
Resumo:
Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.
Resumo:
Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Dept.of Physics, Cochin University of Science and Technology
Resumo:
Two stage processes consisting of precursor preparation by thermal evaporation followed by chalcogenisation in the required atmosphere is found to be a feasible technique for the PV materials such as n-Beta In2S3, p-CulnSe2, p-CulnS2 and p-CuIn(Sel_xSx)2. The growth parameters such as chalcogenisation temperature and duration of chalcogenisation etc have been optimised in the present study.Single phase Beta-In2S3 thin films can be obtained by sulfurising the indium films above 300°C for 45 minutes. Low sulfurisation temperatures required prolonged annealing after the sulfurisation to obtain single phase Beta-1n2S3, which resulted in high material loss. The maximum band gap of 2.58 eV was obtained for the nearly stoichiometric Beta-In2S3 film which was sulfurised at 350°C. This wider band gap, n type Beta-In2S3 can be used as an alternative to toxic CdS as window layer in photovoltaics .The systematic study on the structural optical and electrical properties of CuInSe2 films by varying the process parameters such as the duration of selenization and the selenization temperature led to the conclusion that for the growth of single-phase CuInSe2, the optimum selenization temperature is 350°C and duration is 3 hours. The presence of some binary phases in films for shorter selenization period and lower selenization temperature may be due to the incomplete reaction and indium loss. Optical band gap energy of 1.05 eV obtained for the films under the optimum condition.In order to obtain a closer match to the solar spectrum it is desirable to increase the band gap of the CulnSe2 by a few meV . Further research works were carried out to produce graded band gap CuIn(Se,S)2 absorber films by incorporation of sulfur into CuInSe2. It was observed that when the CulnSe2 prepared by two stage process were post annealed in sulfur atmosphere, the sulfur may be occupying the interstitial positions or forming a CuInS2 phase along with CuInSe2 phase. The sulfur treatment during the selenization process OfCu11 ln9 precursors resulted in Culn (Se,S)2 thin films. A band gap of 1.38 eV was obtained for the CuIn(Se,S)2.The optimised thin films n-beta 1n2S3, p-CulnSe2 and p-Culn(Sel-xSx)2 can be used for fabrication of polycrystalline solar cells.
Resumo:
Effect of chlorine doping on the opto-electronic properties of β-In2S3 thin film, deposited by spray pyrolysis technique is studied for the first time. Chlorine was incorporated in the spray solution, using HCl. Pristine sample prepared using In(NO3)3 and thiourea as the precursors showed very low photosensitivity. But upon adding optimum quantity of chlorine, the photosensitivity increased by 3 orders. X-ray analysis revealed that crystallinity was also increasing up to this optimum level of Cl concentration. It was also observed that samples with high photosensitivity were having higher band gap. The present study proved that doping with chlorine was beneficial as this could result in forming crystalline and photosensitive films of indium sulfide.
Resumo:
b-In2S3 thin filmsweredepositedonIndiumTinOxidesubstratesusingtheChemical SprayPyrolysistechnique.Metalcontactwasdepositedoverthe b-In2S3 thin filmto formahetero-structureofthetypeITO/b-In2S3/Metal.Theintensityoftwophoto- luminescenceemissionsfromthe b-In2S3 thin film,centeredat520and690nmcould be variedbytheapplicationofanexternalbiasvoltagetothishetero-structure.The emissionscouldbeswitchedonoroffdependinguponthemagnitudeoftheexternal appliedbiasvoltage.Thusthepresenceoftwoconductingstatesinthishetero-structure could beidentified.Thetemporalvariationinintensityofthephotoluminescence emissionwiththeapplicationofthebiasvoltagehasalsobeenstudied.Thecondition underwhichphotoluminescencequenchingoccurshasbeenrepresentedbyafirst order differentialequationbetweendiffusionlengthandcarrierconcentration
Resumo:
We report a simple method for novel flower-like In4SnS8 nanostructure synthesis. A flower-like In4SnS8 nanostructure was synthesized via a one-pot hydrothermal route using the biomolecule L-cysteine as a sulfur source. The structure was characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and photoluminescence spectra. This flower-like structure consists of crosslinked nanoflakes and possesses good thermostability and a high BET surface area.
Resumo:
A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Contract No. AC02-77CH00178."