890 resultados para INTERSECTION
Resumo:
We determine those triples (m, II, k) of integers for which there are two m-star designs on the same n-set having exactly k stars in common.
Resumo:
A G-design of order n is a pair (P,B) where P is the vertex set of the complete graph K-n and B is an edge-disjoint decomposition of K-n into copies of the simple graph G. Following design terminology, we call these copies ''blocks''. Here K-4 - e denotes the complete graph K-4 with one edge removed. It is well-known that a K-4 - e design of order n exists if and only if n = 0 or 1 (mod 5), n greater than or equal to 6. The intersection problem here asks for which k is it possible to find two K-4 - e designs (P,B-1) and (P,B-2) of order n, with \B-1 boolean AND B-2\ = k, that is, with precisely k common blocks. Here we completely solve this intersection problem for K-4 - e designs.
Resumo:
An m-cycle system of order upsilon is a partition of the edge-set of a complete graph of order upsilon into m-cycles. The mu -way intersection problem for m-cycle systems involves taking mu systems, based on the same vertex set, and determining the possible number of cycles which can be common to all mu systems. General results for arbitrary m are obtained, and detailed intersection values for (mu, m) = (3, 4), (4, 5),(4, 6), (4, 7), (8, 8), (8, 9). (For the case (mu, m)= (2, m), see Billington (J. Combin. Des. 1 (1993) 435); for the case (Cc,m)=(3,3), see Milici and Quattrochi (Ars Combin. A 24 (1987) 175. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The number of 1-factors (near 1-factors) that mu 1-factorizations (near 1-factorizations) of the complete graph K-v, v even (v odd), can have in common, is studied. The problem is completely settled for mu = 2 and mu = 3.
Resumo:
The set of integers k for which there exist three latin squares of order n having precisely k cells identical, with their remaining n(2) - k cells different in all three latin squares, denoted by I-3[n], is determined here for all orders n. In particular, it is shown that I-3[n] = {0,...,n(2) - 15} {n(2) - 12,n(2) - 9,n(2)} for n greater than or equal to 8. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We construct the Chow motive modelling intersection co-homology of a proper surface. We then study its functoriality properties. Using Murre's decompositions of the motive of a desingularization into KÄunneth components [Mr1], we show that such decompositions exist also for the intersection motive.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In Pseudomonas aeruginosa, the catabolite repression control (Crc) protein repressed the formation of the blue pigment pyocyanin in response to a preferred carbon source (succinate) by interacting with phzM mRNA, which encodes a key enzyme in pyocyanin biosynthesis. Crc bound to an extended imperfect recognition sequence that was interrupted by the AUG translation initiation codon.
Resumo:
We present a method for analyzing the curvature (second derivatives) of the conical intersection hyperline at an optimized critical point. Our method uses the projected Hessians of the degenerate states after elimination of the two branching space coordinates, and is equivalent to a frequency calculation on a single Born-Oppenheimer potential-energy surface. Based on the projected Hessians, we develop an equation for the energy as a function of a set of curvilinear coordinates where the degeneracy is preserved to second order (i.e., the conical intersection hyperline). The curvature of the potential-energy surface in these coordinates is the curvature of the conical intersection hyperline itself, and thus determines whether one has a minimum or saddle point on the hyperline. The equation used to classify optimized conical intersection points depends in a simple way on the first- and second-order degeneracy splittings calculated at these points. As an example, for fulvene, we show that the two optimized conical intersection points of C2v symmetry are saddle points on the intersection hyperline. Accordingly, there are further intersection points of lower energy, and one of C2 symmetry - presented here for the first time - is found to be the global minimum in the intersection space