305 resultados para Hydride
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the formation and diffusion of hydrogen vacancies on MgH2(110) surface and in bulk. We find that the formation energies for a single H-vacancy increase slightly from the surface to deep layers. The energies for creating adjacent surface divancacies at two inplane sites and at an inplane and a bridge site are even smaller than that for the formation of a single H-vacancy, a fact that is attributed to the strong vacancy−vacancy interactions. The diffusion of an H-vacancy from an in-plane site to a bridge site on the surface has the smallest activation barrier calculated at 0.15 eV and should be fast at room temperature. The activation barriers computed for H-vacancy diffusion from the surface into sublayers are all less than 0.70 eV, which is much smaller than the activation energy for desorption of hydrogen on the MgH2(110) surface (1.78−2.80 eV/H2). This suggests that surface desorption is more likely than vacancy diffusion to be rate determining, such that finding effective catalyst on the MgH2 surface to facilitate desorption will be very important for improving overall dehydrogenation performance.
Resumo:
The low index Magnesium hydride surfaces, MgH2(0 0 1) and MgH2(1 1 0), have been studied by ab intio Density Functional Theory (DFT) calculations. It was found that the MgH2(1 1 0) surface is more stable than MgH2(0 0 1) surface, which is in good agreement with the experimental observation. The H2 desorption barriers vary depending on the crystalline surfaces that are exposed and also the specific H atom sites involved – they are found to be generally high, due to the thermodynamic stability of the MgH2 system, and are larger for the MgH2(0 0 1) surface. The pathway for recombinative desorption of one in-plane and one bridging H atom from the MgH2(1 1 0) surface was found to be the lowest energy barrier amongst those computed (172 KJ/mol) and is in good agreement with the experimental estimates.
Resumo:
Ab initio density functional theory calculations are performed to study the experimentally observed catalytic role of V2O5 in the recycling of hydrogen in magnesium hydride. We find that the Mg–H bond length becomes elongated when MgH2 clusters are positioned on single, two, and three coordinated oxygen sites (O1, O2, and O3) on the V2O5(001) surface. Molecular hydrogen is predicted to spontaneously form at the hole site on the V2O5(001) surface. Additionally, the activation barrier for the dissociation of hydrogen on V-doped Mg(0001) surface is 0.20 eV, which is only 1/5 of that on pure Mg(0001) surface. Our results indicate that oxygen sites on the V2O5(001)surface and the V dopant in Mg may be important facilitators for dehydrogenation and rehydrogenation, respectively. The understanding gained here will aid in the rational design and development of Mg-based hydrogen storage materials.
Resumo:
Silver/metal hydride (Ag/MH) cells of about 1 Ah capacity have been fabricated and their discharge characteristics at different rates of discharge, faradaic efficiency, cycle life and a.c. impedance have been evaluated. These cells comprise metal-hydride electrodes prepared by employing similar to 60 mu m powder of an AB(2)-Laves phase alloy of nominal composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 with PTFE binder on a nickel-mesh substrate as the negative plates and commercial-grade silver electrodes as the positive plates. The cells are positive limited and exhibit two distinct voltage plateaus characteristic of two-step reduction of AgO to Ag during their low rates of discharge between C/20 and C/10. This feature is, however, absent when the cells are discharged at C/5 rate. On charging the cells to 100% of their capacity, the faradaic efficiency is found to be 100%. The impedance of the Ag/MH cell is essentially due to the impedance of the silver electrodes, since MH electrodes offer negligible impedance. The cells may be subjected to a large number of charge-discharge cycles with little deterioration.
Resumo:
A chemoselective, neutral, and efficient strategy for the reduction of azides to corresponding amines catalyzed by dioxobis(N,N,-diethyldithiocarbamato) molybdenum complex (1, MoO2[S2CNEt2](2)) in the presence of phenylsilane is discovered. This chemoselective reduction strategy tolerates a variety of reducible functional groups.
Resumo:
A ruthenium(II) ethylene complex, trans-[Ru(H)(C2H4)- (dppm)(2)][BF4], hearing two 1,1-bis(diphenylphosphino) methane (dppm) ligands has been synthesized and structurally characterized using X-ray crystallography. In the molecular structure, the Ru-II center shows a distorted octahedral coordination geometry formed by four P atoms of the two chelating dppm ligands, a hydride, and an ethylene ligands. The four dppm P atoms are almost co-planar with the hydride and the ethylene ligands perpendicular to this plane. The C-C bond distance of the bound ethylene is 1.375(6) angstrom, which is elongated by 0.042 angstrom as compared to free ethylene (1.333(2) angstrom). The packing diagram of the complex shows two voids or channels, which are occupied by BF4- counterion and water molecules.
Resumo:
The half-sandwhich ruthenium chloro complexes bearing chelated diphosphazane ligands, [(eta(5)-Cp)RuCl{kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] [R = C6H3Me2-2,6] (1) and [(eta(5)-Cp*)RuCl{kappa(2)-P, P-X2PN(R)PYY'}] [R = Me, X = Y = Y' = OC6H5 (2); R = CHMe2, X-2 = C20H12O2, Y = Y' = OC6H5 (3) or OC6H4'Bu-4 (4)] have been prepared by the reaction of CpRu(PPh3)(2)Cl with (RO)(2)PN(Me)P(OR)(2) [R = C6H3Me2-2,6 (L-1)] or by the reaction of [Cp*RuCl2](n) with X2PN(R)PYY' in the presence of zinc dust. Among the four diastereomers (two enantiomeric pairs) possible for the "chiral at metal" complexes 3 and 4, only two diastereomers (one enantiomeric pair) are formed in these reactions. The complexes 1, 2, 4 and [(eta(5)-Cp)RuCl {kappa(2)-P,P-Ph2PN((S)-*CHMePh)PPhY)] [Y = Ph (5) or N2C3HMe2-3,5 (SCSPRRu)-(6)] react with NaOMe to give the corresponding hydride complexes [(eta(5) -Cp)RuH {kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] (7), [(eta(5)-Cp*)RuH {kappa(2)-P,P'-X2PN(R)PY2)] [R = Me, X = Y = OC6H5 (8); R = CHMe2, X-2 = C20H12O2, Y = OC6H4'Bu-4 (9)] and [(eta(5) -Cp)RuH(kappa(2)-P, P-Ph2PN((S)-*CHMePh)PPhY)][Y =Ph (10) or N2C3HMe2-3,5 (SCSPRRu)(11a) and (SCSPSRu)-(11b)]. Only one enantiomeric pair of the hydride 9 is obtained from the chloro precursor 4 that bears sterically bulky substituents at the phosphorus centers. On the other hand, the optically pure trichiral complex 6 that bears sterically less bulky substituents at the phosphorus gives a mixture of two diastereomers (11a and 11b). Protonation of complex 7 using different acids (HX) gives a mixture of [(eta(5)- Cp)Ru(eta(2)-H-2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2))]X (12a) and [(eta(5)-Cp)Ru(H)(2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2)}]X (12b) of which 12a is the major product independent of the acid used; the dihydrogen nature of 12a is established by T, measurements and also by synthesizing the deuteride analogue 7-D followed by protonation to obtain the D-H isotopomer. Preliminary investigations on asymmetric transfer hydrogenation of 2-acetonaphthone in the presence of a series of chiral diphosphazane ligands show that diphosphazanes in which the phosphorus centers are strong pi-acceptor in character and bear sterically bulky substituents impart moderate levels of enantioselectivity. Attempts to identify the hydride intermediate involved in the asymmetric transfer hydrogenation by a model reaction suggests that a complex of the type, [Ru(H)(Cl){kappa(2)-P,P-X2PN(R)PY2)(solvent)(2)] could be the active species in this transformation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Reduction of smilagenin acetate (Va) using a boron trifluoride etherate-lithium aluminum hydride reagent, followed by hydrogen peroxide oxidation and acetylation, was found to yield: 3β-ethoxysmilagenin (Vb), 3β-ethoxydihydrosmilagenin acetate (VIa), dihydrosmilagenin diacetate (VIb), and a complex mixture of partially acetylated products. Similar reaction conditions were employed to convert dihydrodiosgenin (II) to dihydrochlorogenin (III). Boron trifluoride etherate-lithium aluminum hydride reduction of 3β-acetoxy-5α-cholestane and 3β-acetoxy-5α-lanostane (VIIIa) was shown to yield the corresponding 3β-ethoxy (e.g., VIIIb) derivatives.
Resumo:
Pure silicon tetrafluoride can be prepared in 66% yield from silicon tetrachloride by refluxing with lead fluoride in acetonitrile. The gas can be reduced to pure silane by lithium aluminum hydride in diethyl ether.
Resumo:
A new methodology has been developed to reduce water soluble and water insoluble organohalides in aqueous medium in high yields using TBTH.
Resumo:
A 1.2 V/1.5 Ah positive-limited nickel/metal hydride cell has been studied to determine its charge-discharge characteristics at different rates in conjunction with its AC impedance data. The faradaic efficiency of the cell is found to be maximum at similar to 70% charge input. The cell has been scaled to a 6 V/1.5 Ah battery. The cycle-life data on the battery suggest that it can sustain a prolonged charge-discharge schedule with little deterioration in its performance.