996 resultados para Humid years


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of variability of rainfall UGRHI-17 is important because it is located in an area of agriculture. This importance is through a better dialogue between research and farmers, who can see this, an analysis of events that impact your direct planting. Noting the periodic occurrence of these events, agriculture can be prevented by protecting your planting and ensuring a good harvest. The analysis and observation of the entire region is through the location of the stations, which allow a more complete analysis if they are well scattered throughout the unit. Through calculations parse wet and dry years, and this work will be given emphasis to the wet years. They presented the climatological average above average extracted for all seasons. These wet years are generally associated with events such as El Niño and the intensification of SACZ. For these years, was also observed the spatial distribution of rainfall through isolines. How to deal with regional data, the Geostatistics was a resource used in this work to make the analysis more complete and closer to the actual data from the wide year-to-interannual scale. Their adoption is in the preparation of contour, making the spatial distribution more accurate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the years 1992-1996 a climatic change took place in the Iberian Peninsula, changing from dry years to humid years, giving place to numerous and abundant rainfalls that, in the zone of Andalusia caused enough problems in embankments of the roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide emissions from intensive, fertilised agricultural systems have been identified as significant contributors to both Australia's and the global greenhouse gas (GHG) budget. This is expected to increase as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on N2O trace gas fluxes from subtropical or tropical tree cropping soils critical for the development of effective mitigation strategies.This study aimed to quantify GHG emissions over two consecutive years (March 2007 to March 2009) from a 30 year (lychee) orchard in the humid subtropical region of Australia. GHG fluxes were measured using a combination of high temporal resolution automated sampling and manually sampled chambers. No fertiliser was added to the plots during the 2007 measurement season. A split application of nitrogen fertiliser (urea) was added at the rate of 265kgNha-1 during the autumn and spring of 2008. Emissions of N2O were influenced by rainfall events and seasonal temperatures during 2007 and the fertilisation events in 2008. Annual N2O emissions from the lychee canopy increased from 1.7kgN2O-Nha-1yr-1 for 2007, to 7.6kgN2O-Nha-1yr-1 following fertiliser application in 2008. This represented an emission factor of 1.56%, corrected for background emissions. The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (2.44%) compared to autumn (EF: 1.10%). This research suggests that avoiding fertiliser application during the hot and moist spring/summer period can reduce N2O losses without compromising yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variations in interannual rainfall totals can lead to large uncertainties in annual N2O emission budget estimates from short term field studies. The interannual variation in nitrous oxide (N2O) emissions from a subtropical pasture in Queensland, Australia, was examined using continuous measurements of automated chambers over 2 consecutive years. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than soil water content. Over 48% of the total N2O emitted was lost in just 16% of measurement days. Interannual variation in annual N2O estimates was high, with cumulative emissions increasing with decreasing rainfall. Cumulative emissions averaged 1826.7 ± 199.9 g N2O-N ha−1 yr−1 over the two year period, though emissions from 2008 (2148 ± 273 g N2O-N ha−1 yr−1) were 42% higher than 2007 (1504 ± 126 g N2O-N ha−1 yr−1). This increase in annual emissions coincided with almost half of the summer precipitation from 2007 to 2008. Emissions dynamics were chiefly driven by the distribution and size of rain events which varied on a seasonal and annual basis. Sampling frequency effects on cumulative N2O flux estimation were assessed using a jackknife technique to inform future manual sampling campaigns. Test subsets of the daily measured data were generated for the pasture and two adjacent land-uses (rainforest and lychee orchard) by selecting measured flux values at regular time intervals ranging from 1 to 30 days. Errors associated with weekly sampling were up to 34% of the sub-daily mean and were highly biased towards overestimation if strategically sampled following rain events. Sampling time of day also played a critical role. Morning sampling best represented the 24 hour mean in the pasture, whereas sampling at noon proved the most accurate in the shaded rainforest and lychee orchard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have integrated information on topography, geology and geomorphology with the results of targeted fieldwork in order to develop a chronology for the development of Lake Megafazzan, a giant lake that has periodically existed in the Fazzan Basin since the late Miocene. The development of the basin can be best understood by considering the main geological and geomorphological events that occurred thought Libya during this period and thus an overview of the palaeohydrology of all Libya is also presented. The origin of the Fazzan Basin appears to lie in the Late Miocene. At this time Libya was dominated by two large rivers systems that flowed into the Mediterranean Sea, the Sahabi River draining central and eastern Libya and the Wadi Nashu River draining much of western Libya. As the Miocene progressed the region become increasingly affected by volcanic activity on its northern and eastern margin that appears to have blocked the River Nashu in Late Miocene or early Messinian times forming a sizeable closed basin in the Fazzan within which proto-Lake Megafazzan would have developed during humid periods. The fall in base level associated with the Messinian desiccation of the Mediterranean Sea promoted down-cutting and extension of river systems throughout much of Libya. To the south of the proto Fazzan Basin the Sahabi River tributary know as Wadi Barjuj appears to have expanded its headwaters westwards. The channel now terminates at Al Haruj al Aswad. We interpret this as a suggestion that Wadi Barjuj was blocked by the progressive development of Al Haruj al Aswad. K/Ar dating of lava flows suggests that this occurred between 4 and 2 Ma. This event would have increased the size of the closed basin in the Fazzan by about half, producing a catchment close to its current size (-350,000 km(2)). The Fazzan Basin contains a wealth of Pleistocene to recent palaeolake sediment outcrops and shorelines. Dating of these features demonstrates evidence of lacustrine conditions during numerous interglacials spanning a period greater than 420 ka. The middle to late Pleistocene interglacials were humid enough to produce a giant lake of about 135,000 km(2) that we have called Lake Megafazzan. Later lake phases were smaller, the interglacials less humid, developing lakes of a few thousand square kilometres. In parallel with these palaeohydrological developments in the Fazzan Basin, change was occurring in other parts of Libya. The Lower Pliocene sea level rise caused sediments to infill much of the Messinian channel system. As this was occurring, subsidence in the Al Kufrah Basin caused expansion of the Al Kufrah River system at the expense of the River Sahabi. By the Pleistocene, the Al Kufrah River dominated the palaeohydrology of eastern Libya and had developed a very large inland delta in its northern reaches that exhibited a complex distributary channel network which at times fed substantial lakes in the Sirt Basin. At this time Libya was a veritable lake district during humid periods with about 10% of the country underwater. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this thesis are to establish a chronological framework for environmental changes during the last 15,000 years in northwest Romania, to reconstruct the vegetation development, and to evaluate the underlying processes for forest dynamics. Furthermore, an overview of earlier and ongoing pollenstratigraphic work in Romania is provided. Sediments from two former crater lakes, Preluca Tiganului and Steregoiu, situated in the Gutaiului Mountains, on the western extremity of the Eastern Carpathians at 730 m and 790 m a.s.l., respectively were obtained and analysed for high-resolution pollen, macrofossils, charcoal, mineral magnetic parameters and organic matter. The chronostratigraphic framework was provided by dense AMS 14C measurements. Cold and dry climatic conditions are indicated by the occurrence of open vegetation with shrubs and herbs, and cold lake water prior to 14,700 cal. yr BP. The climatic improvement at the beginning of the Lateglacial interstadial (around 14,700 cal. yr BP) is seen by the development of open forests. These were dominated by Pinus and Betula, but contained also new arriving tree taxa, such as Populus, Alnus and Prunus. The gradual establishment of forests may have led to a stabilization of the soils in the catchment. Between ca. 14,100 and 13,800 cal. yr BP the forest density became reduced to stands of Pinus, Betula, Alnus, Larix and Populus trees and grassland expanded, suggesting colder climatic conditions. Picea arrived as a new taxon at around 13,800 cal. yr BP, and between 13,800 and 12,900 cal. yr BP, the surroundings of the sites were predominantly covered by Picea forest. This forest included Betula, Pinus, Alnus, Larix and Populus and, from 13,200 cal. yr BP onwards also Ulmus. At ca. 12,900 cal. yr BP, the forest became significantly reduced and at 12,600 cal. yr BP, a recurrence of open vegetation with stands of Larix, Pinus, Betula, Salix and Alnus is documented, lasting until 11,500 cal. yr BP. This distinct change in vegetation may by taken as a strong decline in temperature and moisture availability. At the transition to the Holocene, at ca. 11,500 cal. yr BP, Pinus, Betula and Larix quickly expanded (from small local stands) and formed open forests, probably as a response to warmer and more humid climatic conditions. At 11,250 cal. yr BP Ulmus and Picea expanded and the landscape became completely forested. The rapid increase of Ulmus and Picea after 11,500 cal. yr BP may suggest the existence of small residual populations close to the study sites during the preceding cold interval. Ulmus was the first and most prominent deciduous taxa in the early Holocene in the Gutaiului Mountains. From ca. 10,750 cal. yr BP onwards Quercus, Tilia, Fraxinus and Acer expanded and Corylus arrived. A highly diverse, predominantly deciduous forest with Ulmus, Quercus, Tilia, Fraxinus, Acer, Corylus and Picea developed between 10,700 and 8200 cal. yr BP, which possibly signifies more continental climatic conditions. The development of a Picea-Corylus dominated forest between 8200 and 5700 cal. yr BP is likely connected to a more humid and cooler climate. The establishment of Carpinus and Fagus was dated to 5750 cal. yr BP and 5200 cal. yr BP, respectively. The dominance of Fagus during the late Holocene, from 4000 cal. yr BP onwards, may have been related to cooler and more humid climatic conditions. First signs of human activities are recorded around 2300 cal. yr BP, but only during the last 300 years did local human impact become significant. The vegetation development recorded in the Gutaiului Mountains during the Lateglacial is very similar to reconstructions based on lowland sites, whereas higher elevation sites seem not to have always experienced visible vegetation changes. The time of tree arrival and expansion during the past 11,500 cal. yr BP seems to have occurred almost synchronously across Romania. The composition of the forests during the Holocene in the Gutaiului Mountains is consistent with that reconstructed at mid-elevation sites, but differs from the forest composition at higher elevations. Important differences between the Gutaiului Mountains and other studied sites in Romania are a low representation of Carpinus and a late and weak human impact. The available data sets for Romania give evidence for the presence of coniferous and cold-tolerant deciduous trees before 14,700 cal. yr BP. Glacial refugia for Ulmus may have occurred in different parts of Romania, whereas the existence of Quercus, Tilia, Corylus and Fraxinus has not been corroborated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glacier highstands since the Last Glacial Maximum are well documented for many regions, but little is known about glacier fluctuations and lowstands during the Holocene. This is because the traces of minimum extents are difficult to identify and at many places are still ice covered, limiting the access to sample material. Here we report a new approach to assess minimal glacier extent, using a 72-m long surface-to-bedrock ice core drilled on Khukh Nuru Uul, a glacier in the Tsambagarav mountain range of the Mongolian Altai (4130 m asl, 48°39.338′N, 90°50.826′E). The small ice cap has low ice temperatures and flat bedrock topography at the drill site. This indicates minimal lateral glacier flow and thereby preserved climate signals. The upper two-thirds of the ice core contain 200 years of climate information with annual resolution, whereas the lower third is subject to strong thinning of the annual layers with a basal ice age of approximately 6000 years before present (BP). We interpret the basal ice age as indicative of ice-free conditions in the Tsambagarav mountain range at 4100 m asl prior to 6000 years BP. This age marks the onset of the Neoglaciation and the end of the Holocene Climate Optimum. The ice-free conditions allow for adjusting the Equilibrium Line Altitude (ELA) and derive the glacier extent in the Mongolian Altai during the Holocene Climate Optimum. Based on the ELA-shift, we conclude that most of the glaciers are not remnants of the Last Glacial Maximum but were formed during the second part of the Holocene. The ice core derived accumulation reconstruction suggests important changes in the precipitation pattern over the last 6000 years. During formation of the glacier, more humid conditions than presently prevailed followed by a long dry period from 5000 years BP until 250 years ago. Present conditions are more humid than during the past millennia. This is consistent with precipitation evolution derived from lake sediment studies in the Altai.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three sustainable projects were studied under a sustainable park model for humid climates to determine where their costs lie in terms of installation, maintenance or both. These projects included the use of solar lighting to replace every configuration of conventional lighting, inclusion of a water garden/bog filter and Riparian Buffer System for the purposes of filtering sediments and nutrients out of runoff to prevent contaminated runoff from reaching the river that was adjacent to the park model location and construction of a LEED-inspired building to serve as the concession stand/restrooms building. The aggregate cost savings of instituting all three projects over ten years was $74,120 and the entire project paid itself off in approximately four years.