955 resultados para Histidine-rich protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria rapid diagnostic tests (RDTs) play a critical role in malaria case management, surveillance and case investigations. Test performance is largely determined by design and quality characteristics, such as detection sensitivity, specificity, and thermal stability. However, parasite characteristics such as variable or absent expression of antigens targeted by RDTs can also affect RDT performance. Plasmodium falciparum parasites lacking the PfHRP2 protein, the most common target antigen for detection of P. falciparum, have been reported in some regions. Therefore, accurately mapping the presence and prevalence of P. falciparum parasites lacking pfhrp2 would be an important step so that RDTs targeting alternative antigens, or microscopy, can be preferentially selected for use in such regions. Herein the available evidence and molecular basis for identifying malaria parasites lacking PfHRP2 is reviewed, and a set of recommended procedures to apply for future investigations for parasites lacking PfHRP2, is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Effective diagnosis of malaria is a major component of case management. Rapid diagnostic tests (RDTs) based on Plasmodium falciparumhistidine-rich protein 2 (PfHRP2) are popular for diagnosis of this most virulent malaria infection. However, concerns have been raised about the longevity of the PfHRP2 antigenaemia following curative treatment in endemic regions. METHODS: A model of PfHRP2 production and decay was developed to mimic the kinetics of PfHRP2 antigenaemia during infections. Data from two human infection studies was used to fit the model, and to investigate PfHRP2 kinetics. Four malaria RDTs were assessed in the laboratory to determine the minimum detectable concentration of PfHRP2. RESULTS: Fitting of the PfHRP2 dynamics model indicated that in malaria naive hosts, P. falciparum parasites of the 3D7 strain produce 1.4 x 10(-)(1)(3) g of PfHRP2 per parasite per replication cycle. The four RDTs had minimum detection thresholds between 6.9 and 27.8 ng/mL. Combining these detection thresholds with the kinetics of PfHRP2, it is predicted that as few as 8 parasites/muL may be required to maintain a positive RDT in a chronic infection. CONCLUSIONS: The results of the model indicate that good quality PfHRP2-based RDTs should be able to detect parasites on the first day of symptoms, and that the persistence of the antigen will cause the tests to remain positive for at least seven days after treatment. The duration of a positive test result following curative treatment is dependent on the duration and density of parasitaemia prior to treatment and the presence and affinity of anti-PfHRP2 antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic peptides containing a repetitive hexapeptide sequence (Ala-His-His-Ala-Ala-Asp) of malarial histidine-rich protein II were evaluated for binding with haem in vitro. The pattern of haem binding suggested that each repeat unit of this sequence provides one binding site for haem. Chloroquine inhibited the haem-peptide complex formation with preferential formation of a haem chloroquine complex. In vitro studies on haem polymerisation showed that none of the peptides could initiate haemozoin formation. However, they could inhibit haemozoin formation promoted by a malarial parasite extract, possibly by competitively binding free haem. These results indicate this hexapeptide sequence represents the haem binding site of the malarial histidine-rich protein and possibly the site of nucleation for haem polymerisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid diagnostic tests (RDTs) represent important tools to diagnose malaria infection. To improve understanding of the variable performance of RDTs that detect the major target in Plasmodium falciparum, namely, histidine-rich protein 2 (HRP2), and to inform the design of better tests, we undertook detailed mapping of the epitopes recognized by eight HRP-specific monoclonal antibodies (MAbs). To investigate the geographic skewing of this polymorphic protein, we analyzed the distribution of these epitopes in parasites from geographically diverse areas. To identify an ideal amino acid motif for a MAb to target in HRP2 and in the related protein HRP3, we used a purpose-designed script to perform bioinformatic analysis of 448 distinct gene sequences from pfhrp2 and from 99 sequences from the closely related gene pfhrp3. The frequency and distribution of these motifs were also compared to the MAb epitopes. Heat stability testing of MAbs immobilized on nitrocellulose membranes was also performed. Results of these experiments enabled the identification of MAbs with the most desirable characteristics for inclusion in RDTs, including copy number and coverage of target epitopes, geographic skewing, heat stability, and match with the most abundant amino acid motifs identified. This study therefore informs the selection of MAbs to include in malaria RDTs as well as in the generation of improved MAbs that should improve the performance of HRP-detecting malaria RDTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Rapid diagnostic tests (RDTs) for detection of Plasmodium falciparum infection that target P. falciparum histidine-rich protein 2 (PfHRP2), a protein that circulates in the blood of patients infected with this species of malaria, are widely used to guide case management. Understanding determinants of PfHRP2 availability in circulation is therefore essential to understanding the performance of PfHRP2-detecting RDTs. Methods The possibility that pre-formed host anti-PfHRP2 antibodies may block target antigen detection, thereby causing false negative test results was investigated in this study. Results Anti-PfHRP2 antibodies were detected in 19/75 (25%) of plasma samples collected from patients with acute malaria from Cambodia, Nigeria and the Philippines, as well as in 3/28 (10.7%) asymptomatic Solomon Islands residents. Pre-incubation of plasma samples from subjects with high-titre anti-PfHRP2 antibodies with soluble PfHRP2 blocked the detection of the target antigen on two of the three brands of RDTs tested, leading to false negative results. Pre-incubation of the plasma with intact parasitized erythrocytes resulted in a reduction of band intensity at the highest parasite density, and a reduction of lower detection threshold by ten-fold on all three brands of RDTs tested. Conclusions These observations indicate possible reduced sensitivity for diagnosis of P. falciparum malaria using PfHRP2-detecting RDTs among people with high levels of specific antibodies and low density infection, as well as possible interference with tests configured to detect soluble PfHRP2 in saliva or urine samples. Further investigations are required to assess the impact of pre-formed anti-PfHRP2 antibodies on RDT performance in different transmission settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major blood stage antimalarial drugs like chloroquine and artemisinin target the heme detoxification process of the malaria parasite. Hemozoin formation reactions in vitro using the Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2), lipids, and auto-catalysis are slow and could not explain the speed of detoxification needed for parasite survival. Here, we show that malarial hemozoin formation is a coordinated two component process involving both lipids and histidine-rich proteins. Hemozoin formation efficiency in vitro is 1-2% with Pfhrp-2 and 0.25-0.5% with lipids. We added lipids after 9h in a 12h Pfhrp-2 mediated reaction that resulted in sixfold increase in hemozoin formation. However, a lipid mediated reaction in which Pfhrp-2 was added after 9h produced only twofold increase in hemozoin production compared to the reaction with Pfhrp-2 alone. Synthetic peptides corresponding to the Pfhrp-2 heme binding sequences, based on repeats of AHHAAD, neither alone nor in combination with lipids were able to generate hemozoin in vitro. These results indicate that hemozoin formation in malaria parasite involves both the lipids and the scaffolding proteins. Histidine-rich proteins might facilitate hemozoin formation by binding with a large number of heme molecules, and facilitating the dimer formation involving iron-carboxylate bond between two heme molecules, and lipids may then subsequently assist the mechanism of long chain formation, held together by hydrogen bonds or through extensive networking of hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete cDNA encoding a novel hybrid Pro-rich protein (HyPRP) was identified by differentially screening 3x10(4) recombinant plaques of a Cuscuta reflexa cytokinin-induced haustorial cDNA library constructed in lambda gt10. The nucleotide (nt) sequence consists of: (i) a 424-bp 5'-non coding region having five start codons (ATGs) and three upstream open reading frames (uORFs); (ii) an ORF of 987 bp with coding potential for a 329-amino-acid (aa) protein of M(r), 35203 with a hydrophobic N-terminal region including a stretch of nine consecutive Phe followed by a Pro-rich sequence and a Cys-rich hydrophobic C terminus; and (iii) a 178-bp 3'-UTR (untranslated region). Comparison of the predicted aa sequence with the NBRF and SWISSPROT databases and with a recent report of an embryo-specific protein of maize [Jose-Estanyol et al., Plant Cell 4 (1992) 413-423] showed it to be similar to the class of HyPRPs encoded by genes preferentially expressed in young tomato fruits, maize embryos and in vitro-cultured carrot embryos. Northern analysis revealed an approx. 1.8-kb mRNA of this gene expressed in the subapical region of the C. reflexa vine which exhibited maximum sensitivity to cytokinin in haustorial induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug-resistant Salmonella serovars have been a recent concern in curing infectious diseases like typhoid. Salmonella BaeS and BaeR are the two-component system (TCS) that signal transduction proteins found to play an important role in its multidrug resistance. A canonical TCS comprises a histidine kinase (HK) and its cognate partner response regulator (RR). The general approaches for therapeutic targeting are either the catalytic ATP-binding domain or the dimerization domain HisKA (DHp) of the HK, and in some cases, the receiver or the regulatory domain of the RR proteins. Earlier efforts of identifying novel drugs targeting the signal transduction protein have not been quite successful, as it shares similar ATP-binding domain with the key house keeping gene products of the mammalian GHL family. However, targeting the dimerization domain of HisKA through which the signals are received from the RR can be a better approach. In this article, we show stepwise procedure to specifically identify the key interacting residues involved in the dimerization with the RR along with effective targeting by ligands screened from the public database. We have found a few inhibitors which target effectively the important residues for the dimerization activity. Our results suggest a plausible de novo design of better DHp domain inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.