972 resultados para Hamiltonian Graph
Resumo:
2010 Mathematics Subject Classification: 05C38, 05C45.
Resumo:
The first part of this paper deals with an extension of Dirac's Theorem to directed graphs. It is related to a result often referred to as the Ghouila-Houri Theorem. Here we show that the requirement of being strongly connected in the hypothesis of the Ghouila-Houri Theorem is redundant. The Second part of the paper shows that a condition on the number of edges for a graph to be hamiltonian implies Ore's condition on the degrees of the vertices.
Resumo:
In this dissertation I draw a connection between quantum adiabatic optimization, spectral graph theory, heat-diffusion, and sub-stochastic processes through the operators that govern these processes and their associated spectra. In particular, we study Hamiltonians which have recently become known as ``stoquastic'' or, equivalently, the generators of sub-stochastic processes. The operators corresponding to these Hamiltonians are of interest in all of the settings mentioned above. I predominantly explore the connection between the spectral gap of an operator, or the difference between the two lowest energies of that operator, and certain equilibrium behavior. In the context of adiabatic optimization, this corresponds to the likelihood of solving the optimization problem of interest. I will provide an instance of an optimization problem that is easy to solve classically, but leaves open the possibility to being difficult adiabatically. Aside from this concrete example, the work in this dissertation is predominantly mathematical and we focus on bounding the spectral gap. Our primary tool for doing this is spectral graph theory, which provides the most natural approach to this task by simply considering Dirichlet eigenvalues of subgraphs of host graphs. I will derive tight bounds for the gap of one-dimensional, hypercube, and general convex subgraphs. The techniques used will also adapt methods recently used by Andrews and Clutterbuck to prove the long-standing ``Fundamental Gap Conjecture''.
Resumo:
We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n = p(2) for an odd prime p. We construct a family of (p-1)/2 non-isomorphic perfect 1-factorisations of K-n,K-n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltoilian if the permutation defined by any row relative to any other row is a single Cycle. (C) 2002 Elsevier Science (USA).
Resumo:
The elevated plus-maze is a device widely used to assess rodent anxiety under the effect of several treatments, including pharmacological agents. The animal is placed at the center of the apparatus, which consists of two open arms and two arms enclosed by walls, and the number of entries and duration of stay in each arm are measured for a 5-min exposure period. The effect of an anxiolytic drug is to increase the percentage of time spent and number of entries into the open arms. In this work, we propose a new measure of anxiety levels in the rat submitted to the elevated plus-maze. We represented the spatial structure of the elevated plus-maze in terms of a directed graph and studied the statistics of the rat`s transitions between the nodes of the graph. By counting the number of times each transition is made and ordering them in descending frequency we represented the rat`s behavior in a rank-frequency plot. Our results suggest that the curves obtained under different pharmacological conditions can be well fitted by a power law with an exponent sensitive to both the drug type and the dose used. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In a previous paper we introduced examples of Hamiltonian mappings with phase space structures resembling circle packings. It was shown that a vast number of periodic orbits can be found using special properties. We now use this information to explore the semiclassical quantization of one of these maps.
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.