A family of perfect factorisations of complete bipartite graphs


Autoria(s): Bryant, Darryn; Maenhaut, Barbara M.; Wanless, Ian M.
Data(s)

01/05/2002

Resumo

A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n = p(2) for an odd prime p. We construct a family of (p-1)/2 non-isomorphic perfect 1-factorisations of K-n,K-n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltoilian if the permutation defined by any row relative to any other row is a single Cycle. (C) 2002 Elsevier Science (USA).

Identificador

http://espace.library.uq.edu.au/view/UQ:38210

Idioma(s)

eng

Publicador

Academic Press Inc Elsevier Science

Palavras-Chave #Mathematics #Latin Squares #C1 #02 Physical Sciences
Tipo

Journal Article