967 resultados para Glucocorticoid Receptor Polymorphisms
Resumo:
Post-traumatic stress disorder (PTSD) is reported in some studies to be associated with increased glucocorticoid (GC) sensitivity. Two common glucocorticoid receptor (GR) potymorphisms (N363S and 8cll) appear to contribute to the population variance in GC sensitivity. There is some evidence that there may be a genetic predisposition to PTSD. Hence we studied 118 Vietnam war veterans with PTSD for (i) GR polymorphisms, particularly the N363S and the Bcll polymorphisms which are thought to be GC sensitising, and (ii) two measures of GC sensitivity, the tow-dose 0.25 mg dexamethasone suppression test (LD-DST) and the dermal vasoconstrictor assay (DVVA). The DST and GR polymorphisms were also performed in 42 combat exposed Vietnam war veterans without PTSD. Basal plasma cortisol levels were not significantly different in PTSD (399.5 +/- 19.2 nmol/L, N=75) and controls (348.6 +/- 23.0 nmol/L, N = 33) and the LD-DST resulted in similar cortisol suppression in both groups (45.6 +/- 3.2 vs. 40.8 +/- 4.1%). The cortisol suppression in PTSD patients does not correlate with Clinician Administered PTSD Scores (CAPS), however there was a significant association between the Bcll GG genotype and low basal cortisol levels in PTSD (P=0.048). The response to the DVVA was similar to controls (945 +/- 122, N = 106 vs. 730 +/- 236, N = 28, P = 0.42). PTSD patients with the GG genotype, however, tended to be more responsive to DVVA and in this group the DVVA correlated with higher CAPS scores. The only exon 2 GR polymorphisms detected were the R23K and N363S. Heterozygosity for the N363S variant in PTSD, at 5.1% was not more prevalent than in other population studies of the N363S polymorphism in Caucasians (6.0-14.8%). The GG genotype of the Bcll polymorphism found to be associated with increased GC sensitivity in many studies showed a tendency towards increased response with DVVA and correlated with higher CAPS scores. In conclusion, the N363S and Bcll GR polymorphisms were not more frequent in PTSD patients than controls and reported population frequencies. Our PTSD group did not display GC hypersensitivity, as measured by the LD-DST and DVVA. In a subset of PTSD patients with the Bcll GG genotype, CAPS scores and basal cortisol Levels were negatively correlated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have utilized a cross-sectional association approach to investigate sporadic breast cancer. Polymorphisms in 2 candidate genes, ESRalpha and GRL, were examined in an unrelated breast cancer-affected and age-matched control population. Several polymorphic regions within the ESRalpha gene have been identified, and some alleles of these polymorphisms have been found to occur at increased levels in breast-cancer patients. Additionally, variations in GRL have the potential to disrupt cell transcription and may be associated with cancer formation. We analyzed 3 polymorphisms, from codons 10 (TCT to TCC), 325 (CCC to CCG) and 594 (ACA to ACG) of ESRalpha, and a highly polymorphic dinucleotide repeat, D5S207, located within 200 kb of the GRL. When allelic frequencies of the codon 594 (exon 8) ESR polymorphism were compared between affected and unaffected populations, a significant difference was observed (p = 0.005). Results from the D5S207 dinucleotide repeat located near GRL also indicated a significant difference between the tested case and control populations (p = 0.001). Allelic frequencies of the codon 10 and codon 325 ESR polymorphisms were not significantly different between populations (p = 0.152 and 0.181, respectively). Our results indicate that specific alleles of the ESR gene (alpha subtype) and a marker for the GRL gene locus are associated with sporadic breast-cancer development in the tested Caucasian population and justify further investigation of the role of these and other nuclear steroid receptors in the etiology of breast cancer.
Resumo:
Background: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology: Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4 +/- 9 years received dexamethasone (mean 0.27 +/- 0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 mu g/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI >= 30 kg/m(2). NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m(2) +/- 5.3 vs. 26 kg/m(2) +/- 5.3, respectively) and waist circumference (89 cm +/- 12.7 vs. 81 cm +/- 13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk patients, allowing for the establishment of personalized treatment and the avoidance of long-term adverse consequences.
Resumo:
Hypertension is usually defined as having values of systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg. Hypertension is one of the main adverse effects of glucocorticoid on the cardiovascular system. Glucocorticoids are essential hormones, secreted from adrenal glands in circadian fashion. Glucocorticoid's effect on blood pressure is conveyed by the glucocorticoid receptor (NR3C1), an omnipresent nuclear transcription factor. Although polymorphisms in this gene have long been implicated to be a causal factor for cardiovascular diseases such as hypertension, no study has yet thoroughly interrogated the gene's polymorphisms for their effect on blood pressure levels. Therefore, I have first resequenced ∼30 kb of the gene, encompassing all exons, promoter regions, 5'/3' UTRs as well as at least 1.5 kb of the gene's flanking regions from 114 chromosome 5 monosomic cell lines, comprised of three major American ethnic groups—European American, African American and Mexican American. I observed 115 polymorphisms and 14 common molecularly phased haplotypes. A subset of markers was chosen for genotyping study populations of GENOA (Genetic Epidemiology Network of Atherosclerosis; 1022 non-Hispanic whites, 1228 African Americans and 954 Mexican Americans). Since these study populations include sibships, the family-based association test was performed on 4 blood pressure-related quantitative variables—pulse, systolic blood pressure, diastolic blood pressure and mean arterial pressure. Using these analyses, multiple correlated SNPs are significantly protective against high systolic blood pressure in non-Hispanic whites, which includes rsb198, a SNP formerly associated with beneficial body compositions. Haplotype association analysis also supports this finding and all p-values remained significant after permutation tests. I therefore conclude that multiple correlated SNPs on the gene may confer protection against high blood pressure in non-Hispanic whites. ^
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.
Resumo:
Background There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case–control studies. We conducted searches of the literature published up to January 2013 in MEDLINE using the PubMed search engine. Individual data on 8,430 cases and 14,008 controls from six case–control studies of an all Caucasian population were evaluated for three ghrelin gene (GHRL; rs696217, rs4684677, rs2075356) and one ghrelin receptor (GHSR; rs572169) polymorphism in breast cancer, esophageal cancer, colorectal cancer and non-Hodgkins lymphoma. Results In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). Conclusions This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.
Resumo:
Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.
Resumo:
Epidemiological studies have identified psychological stress as a significant risk factor in breast cancer. The stress response is regulated by the HPA axis in the brain and is mediated by glucocorticoid receptor (GR) signalling. It has been found that early life events can affect epigenetic programming of GR, and methylation of the GR promoter has been reported in colorectal tumourigenesis. Decreased GR expression has also been observed in breast cancer. In addition, it has been previously demonstrated that unliganded GR can serve as a direct activator of the BRCA1 promoter in mammary epithelial cells. We propose a model whereby methylation of the GR promoter in the breast significantly lowers GR expression, resulting in insufficient BRCA1 promoter activation and an increased risk of developing cancer. Antibody-based methylated DNA enrichment was followed by qPCR analysis (MeDIP-qPCR) in a novel assay developed to detect locus-specific methylation levels. It was found that 13% of primary breast tumours were hypermethylated at the GR proximal promoter whereas no methylation was detected in normal tissue. RT-PCR and 5’ RACE analysis identified exon 1B as the predominant alternative first exon in the breast. Tumours methylated near exon 1B had decreased GR expression compared to unmethylated samples, suggesting that this region is important for transcriptional regulation of GR. It was also determined that GR and BRCA1 expression was decreased in breast tumour compared to normal tissue. Furthermore, the relative expression of GR and BRCA1 measured by qRT-PCR was correlated in normal tissue but this association was not found in tumour tissue. From this, it appears that lower GR levels with associated decreased BRCA1 expression in tissues may be a predisposing factor for breast cancer. Based on these results we propose a role for GR as a potential tumour suppressor gene in the breast due to its association with BRCA1, also a tumour suppressor gene, as well as its consistently decreased expression in breast tumours and methylation of its proximal promoter in a subset of cancer patients.
Resumo:
Rationale Upregulation of glucocorticoid receptor ß (GRß) has been implicated in steroid resistance in severe asthma, although previous studies are conflicting. GRß has been proposed as a dominant negative isoform of glucocorticoid receptor a (GRa) but it has also been suggested that GRß can cause steroid resistance via reduced expression of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness in the airway.
Objectives To examine GRß, GRa, HDAC1 and HDAC2 expression at transcript and protein levels in bronchial biopsies from a large series of patients with severe asthma, and to compare the findings with those of patients with mild to moderate asthma and healthy volunteers.
Methods Bronchoscopic study in two UK centres with real-time PCR and immunohistochemistry performed on biopsies, western blotting of bronchial epithelial cells and immunoprecipitation with anti-GRß antibody.
Measurements and main results Protein and mRNA expression for GRa and HDAC2 did not differ between groups. GRß mRNA was detected in only 13 of 73 samples (seven patients with severe asthma), however immunohistochemistry showed widespread epithelial staining in all groups. Western blotting of bronchial epithelial cells with GRß antibody detected an additional ‘cross-reacting’ protein, identified as clathrin. HDAC1 expression was increased in patients with severe asthma compared with healthy volunteers.
Conclusions GRß mRNA is expressed at low levels in a minority of patients with severe asthma. HDAC1 and HDAC2 expression was not downregulated in severe asthma. These data do not support upregulated GRß and resultant reduced HDAC expression as the principal mechanism of steroid resistance in severe asthma. Conflicting GRß literature may be explained in part by clathrin cross-reactivity with commercial antibodies.