985 resultados para Generalized Functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two extension theorems for holomorphic generalized functions. The first one is a version of the classic Hartogs extension theorem. In this, we start from a holomorphic generalized function on an open neighbourhood of the bounded open boundary, extending it, holomorphically, to a full open. In the second theorem a generalized version of a classic result is obtained, done independently, in 1943, by Bochner and Severi. For this theorem, we start from a function that is holomorphic generalized and has a holomorphic representative on the bounded domain boundary, we extend it holomorphically the function, for the whole domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we explore the link between the moments of the Laguerre polynomials or Laguerre moments and the generalized functions (as the Dirac delta-function and its derivatives), presenting several interesting relations. A useful application is related to a procedure for calculating mean values in quantum optics that makes use of the so-called quasi-probabilities. One of them, the P-distribution, can be represented by a sum over Laguerre moments when the electromagnetic field is in a photon-number state. Consequently, the P-distribution can be expressed in terms of Dirac delta-function and derivatives. More specifically, we found a direct relation between P-distributions and the Laguerre factorial moments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a definition of the Hilbert transform operating on Colombeau's temperated generalized functions is given. Similar results to some theorems that hold in the classical theory, or in certain subspaces of Schwartz distributions, have been obtained in this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study of the generalized holomorphic functions, HG(Omega), having in mind its strict elements, i.e. those which are in HG(Omega) - H(Omega), as well as the possibility of the existence of hybrid elements, i.e. elements which have, in a part of a domain Omega subset of C-n, the strict behaviour and, in another part of the same domain, the classical behaviour, is carried out in this work. The study of hybrid elements is important in the approach of a concept of generalized domain of holomorphy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.