956 resultados para Gas sensors
Resumo:
Using a combination of density functional theory and recursive Green's functions techniques, we present a full description of a large scale sensor, accounting for disorder and different coverages. Here, we use this method to demonstrate the functionality of nitrogen-rich carbon nanotubes as ammonia sensors as an example. We show how the molecules one wishes to detect bind to the most relevant defects on the nanotube, describe how these interactions lead to changes in the electronic transport properties of each isolated defect, and demonstrate that there are significative resistance changes even in the presence of disorder, elucidating how a realistic nanosensor works.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
En este trabajo se presenta un estudio químico y estructural de las capas metálicas de Pt y TaSix utilizadas como puerta catalítica en sensores de gas de alta temperatura basados en dispositivos MOS de SiC. Para ello se han depositado capas de diferentes espesores sobre substratos de Si. Los resultados muestran que con la reducción del espesor de Pt y con un recocido se consigue aumentar la rugosidad de las capas de puerta, lo que debería aumentar la sensibilidad y la velocidad de respuesta de los dispositivos que las incorporasen. Otro efecto del recocido es la transformación química del material de la puerta que, para capas delgadas de Pt con TaSix, produce la transformación total Pt en Pt2Ta, lo que podría afectar a las características catalíticas de la puerta. Los primeros resultados eléctricos indican que, a pesar de que las capas de Pt empleadas son gruesas y compactas, los diodos MOS túnel de SiC son sensibles a los gases CO y NO2, aunque presentan una velocidad de respuesta bastante lenta.
Resumo:
One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.
Resumo:
Der Schwerpunkt dieser Arbeit liegt in der Anwendung funktionalisierter Mikrocantilever mit integrierter bimorpher Aktuation und piezo-resistiver Detektion als chemische Gassensoren für den schnellen, tragbaren und preisgünstigen Nachweis verschiedener flüchtiger Substanzen. Besondere Beachtung erfährt die Verbesserung der Cantilever-Arbeitsleistung durch den Betrieb in speziellen Modi. Weiterer Schwerpunkt liegt in der Untersuchung von spezifischen Sorptionswechselwirkungen und Anwendung von innovativen Funktionsschichten, die bedeutend auf die Sensorselektivität wirken.
Resumo:
A careful analysis of the impedance response of SnO2 thick films under vacuum and air atmosphere is reported in the present work. The AC electrical resistance was analyzed and it was shown that it is highly frequency dependent. Different models and its equivalent circuit representation were proposed and carefully analyzed based on the microstructure features of the device. Basically, an interpretation of the frequency dependent resistance was proposed based on the fact that different grains characteristics and junctions exist. These different grains and junctions are the main source of resistance dependent feature. An equivalent circuit model, considering different grain sizes associated with different grain boundary junctions characteristics, was introduced so that a consistent interpretation of the results was possible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.