995 resultados para Galton-Watson branching process
Resumo:
A Superadditive Bisexual Galton-Watson Branching Process is considered and the total number of mating units, females and males, until the n-th generation, are studied. In particular some results about the stochastic monotony, probability generating functions and moments are obtained. Finally, the limit behaviour of those variables suitably normed is investigated.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Resumo:
AMS subject classification: 60J80, 60J15.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62P05.
Resumo:
AMS subject classification: 60J80, 62F12, 62P10.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.
Resumo:
2000 Mathematics Subject Classification: Primary 60J80, Secondary 62F12, 60G99.
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62F12, 62P10
Resumo:
2000 Mathematics Subject Classification: 60J80, 60F05
Resumo:
2010 Mathematics Subject Classification: 60J85, 92D25.
Resumo:
Косто В. Митов - Разклоняващите се стохастични процеси са модели на популационната динамика на обекти, които имат случайно време на живот и произвеждат потомци в съответствие с дадени вероятностни закони. Типични примери са ядрените реакции, клетъчната пролиферация, биологичното размножаване, някои химични реакции, икономически и финансови явления. В този обзор сме се опитали да представим съвсем накратко някои от най-важните моменти и факти от историята, теорията и приложенията на разклоняващите се процеси.