937 resultados para GENERALIZED LOGARITHMIC AND EXPONENTIAL FUNCTIONS
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
We consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Includes index.
Resumo:
Quaternionic theory has greatly been developed in recent years [1-12]. Thus, in our view, the study of trigonometric and logarithmic type quaternionic functions is important for the determination and realization of a hyper complex theory. In this paper, we intend to give a geometrical foundation for both logarithmic and trigonometric hyper complex functions based on the exponential function of quaternionic type recently introduced by Borges, Marão and Machado in their paper entitled Geometrical octonions II: Hyper regularity and hyper periodicity of the exponential function appearing. © 2011 Pushpa Publishing House.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.
Resumo:
In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.
Resumo:
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.
Resumo:
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a delta-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on delta. We apply the obtained estimates to show exponential convergence with rate O(exp(−b square root N)), N being the number of degrees of freedom and b>0, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate O(exp(−b cubic root N )), and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Resumo:
Bibliography: p. 209-212.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
Purpose. To determine the mechanisms predisposing penile fracture as well as the rate of long-term penile deformity and erectile and voiding functions. Methods. All fractures were repaired on an emergency basis via subcoronal incision and absorbable suture with simultaneous repair of eventual urethral lesion. Patients' status before fracture and voiding and erectile functions at long term were assessed by periodic follow-up and phone call. Detailed history included cause, symptoms, and single-question self-report of erectile and voiding functions. Results. Among the 44 suspicious cases, 42 (95.4%) were confirmed, mean age was 34.5 years (range: 18-60), mean follow-up 59.3 months (range 9-155). Half presented the classical triad of audible crack, detumescence, and pain. Heterosexual intercourse was the most common cause (28 patients, 66.7%), followed by penile manipulation (6 patients, 14.3%), and homosexual intercourse (4 patients, 9.5%). Woman on top was the most common heterosexual position (n = 14, 50%), followed by doggy style (n = 8, 28.6%). Four patients (9.5%) maintained the cause unclear. Six (14.3%) patients had urethral injury and two (4.8%) had erectile dysfunction, treated by penile prosthesis and PDE-5i. No patient showed urethral fistula, voiding deterioration, penile nodule/curve or pain. Conclusions. Woman on top was the potentially riskiest sexual position (50%). Immediate surgical treatment warrants long-term very low morbidity.
Resumo:
This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.