954 resultados para Functional Approach
Resumo:
Taking functional programming to its extremities in search of simplicity still requires integration with other development (e.g. formal) methods. Induction is the key to deriving and verifying functional programs, but can be simplified through packaging proofs with functions, particularly folds, on data (structures). Totally Functional Programming avoids the complexities of interpretation by directly representing data (structures) as platonic combinators - the functions characteristic to the data. The link between the two simplifications is that platonic combinators are a kind of partially-applied fold, which means that platonic combinators inherit fold-theoretic properties, but with some apparent simplifications due to the platonic combinator representation. However, despite observable behaviour within functional programming that suggests that TFP is widely-applicable, significant work remains before TFP as such could be widely adopted.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.
A functional approach to movement analysis and error identification in sports and physical education
Resumo:
Knowing a cell’s transcriptome is a fundamental requisite in order to analyze its response to the environment. Microarrays have supposed a revolution on this field as they are able to yield an overview of gene expression at any environmental condition on a genome-wide scale. This technique consists in the hybridisation of a nucleic acid sample, previously marked, with a probe (which might be made up of cDNA, oligonucleotides or PCR products) anchored to a solid surface (made of glass, plastic, silicon...) giving as a result a dot grid which reveals, after image analysis, which genes are being expressed. Nevertheless, this only can be achieved if information on the species genome has been generated. Different kinds of expression microarrays exist attending to the probe’s nature and the method used in its synthesis. In this poster two of these will be treated: Spotted Microarrays, for which the probe is synthesised prior to its fixation to the array and allow the analysis of two targets simultaneously. They can be easily customized, but lack high reproducibility and sensitivity. Oligonucleotide Microarrays, which are characterized by the direct printing of the probe on the array. In this case the probes consist on, invariably, oligonucleotides that are complementary to a small fraction of the gene it is representing at the microarray. Their application is somewhat restricted. This fact, however, makes them more reproducible. Currently, the approach towards the transcriptome studies from the Next Generation Sequencing technologies offers a large volume of information in a short amount of time needing less previous information on the target organism than that needed by microarrays, but their expensive price limits their use. The versatility of the latter, together with their reduced costs in comparison to other techniques, makes them an interesting resource in applications that may need less complexity.
Resumo:
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
Resumo:
The aim of the thesis was to study quality management with process approach and to find out how to utilize process management to improve quality. The operating environment of organizations has changed. Organizations are focusing on their core competences and networking with suppliers and customers to ensure more effective and efficient value creation for the end customer. Quality management is moving from inspection of the output to prevention of problems from occurring in the first place and management thinking is changing from functional approach to process approach. In the theoretical part of the thesis, it is studied how to define quality, how to achieve good quality, how to improve quality, and how to make sure the improvement goes on as never ending cycle. A selection of quality tools is introduced. Process approach to quality management is described and compared to functional approach, which is the traditional way to manage operations and quality. The customer focus is also studied, and it is presented, that to ensure long term customer commitment, organization needs to react to changing customer requirements and wishes by constantly improving the processes. In the experimental part the theories are tested in a process improvement business case. It is shown how to execute a process improvement project starting from defining the customer requirements, continuing to defining the process ownership, roles and responsibilities, boundaries, interfaces and the actual process activities. The control points and measures are determined for the process, as well as the feedback and corrective action process, to ensure continual improvement can be achieved and to enable verification that customer requirements are fulfilled.
Resumo:
Functional programming has a lot to offer to the developers of global Internet-centric applications, but is often applicable only to a small part of the system or requires major architectural changes. The data model used for functional computation is often simply considered a consequence of the chosen programming style, although inappropriate choice of such model can make integration with imperative parts much harder. In this paper we do the opposite: we start from a data model based on JSON and then derive the functional approach from it. We outline the identified principles and present Jsonya/fn — a low-level functional language that is defined in and operates with the selected data model. We use several Jsonya/fn implementations and the architecture of a recently developed application to show that our approach can improve interoperability and can achieve additional reuse of representations and operations at relatively low cost. ACM Computing Classification System (1998): D.3.2, D.3.4.
Resumo:
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.