889 resultados para Forecast error variance
Resumo:
Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.
Resumo:
Resumo:
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.
Resumo:
The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.
Resumo:
Diabatic processes can alter Rossby wave structure; consequently errors arising from model processes propagate downstream. However, the chaotic spread of forecasts from initial condition uncertainty renders it difficult to trace back from root mean square forecast errors to model errors. Here diagnostics unaffected by phase errors are used, enabling investigation of systematic errors in Rossby waves in winter-season forecasts from three operational centers. Tropopause sharpness adjacent to ridges decreases with forecast lead time. It depends strongly on model resolution, even though models are examined on a common grid. Rossby wave amplitude reduces with lead time up to about five days, consistent with under-representation of diabatic modification and transport of air from the lower troposphere into upper-tropospheric ridges, and with too weak humidity gradients across the tropopause. However, amplitude also decreases when resolution is decreased. Further work is necessary to isolate the contribution from errors in the representation of diabatic processes.
Resumo:
An important disconnect in the news driven view of the business cycle formalized by Beaudry and Portier (2004), is the lack of agreement between different—VAR and DSGE—methodologies over the empirical plausibility of this view. We argue that this disconnect can be largely resolved once we augment a standard DSGE model with a financial channel that provides amplification to news shocks. Both methodologies suggest news shocks to the future growth prospects of the economy to be significant drivers of U.S. business cycles in the post-Greenspan era (1990-2011), explaining as much as 50% of the forecast error variance in hours worked in cyclical frequencies
Resumo:
Traditionally real estate has been seen as a good diversification tool for a stock portfolio due to the lower return and volatility characteristics of real estate investments. However, the diversification benefits of a multi-asset portfolio depend on how the different asset classes co-move in the short- and long-run. As the asset classes are affected by the same macroeconomic factors, interrelationships limiting the diversification benefits could exist. This master’s thesis aims to identify such dynamic linkages in the Finnish real estate and stock markets. The results are beneficial for portfolio optimization tasks as well as for policy-making. The real estate industry can be divided into direct and securitized markets. In this thesis the direct market is depicted by the Finnish housing market index. The securitized market is proxied by the Finnish all-sectors securitized real estate index and by a European residential Real Estate Investment Trust index. The stock market is depicted by OMX Helsinki Cap index. Several macroeconomic variables are incorporated as well. The methodology of this thesis is based on the Vector Autoregressive (VAR) models. The long-run dynamic linkages are studied with Johansen’s cointegration tests and the short-run interrelationships are examined with Granger-causality tests. In addition, impulse response functions and forecast error variance decomposition analyses are used for robustness checks. The results show that long-run co-movement, or cointegration, did not exist between the housing and stock markets during the sample period. This indicates diversification benefits in the long-run. However, cointegration between the stock and securitized real estate markets was identified. This indicates limited diversification benefits and shows that the listed real estate market in Finland is not matured enough to be considered a separate market from the general stock market. Moreover, while securitized real estate was shown to cointegrate with the housing market in the long-run, the two markets are still too different in their characteristics to be used as substitutes in a multi-asset portfolio. This implies that the capital intensiveness of housing investments cannot be circumvented by investing in securitized real estate.
Resumo:
Since different stock markets have become more integrated during 2000s, investors need new asset classes in order to gain diversification benefits. Commodities have become popular to invest in and thus it is important to examine whether the investors should use commodities as a part for portfolio diversification. This master’s thesis examines the dynamic relationship between Finnish stock market and commodities. The methodology is based on Vector Autoregressive models (VAR). The long-run relationship between Finnish stock market and commodities is examined with Johansen cointegration while short-run relationship is examined with VAR models and Granger causality test. In addition, impulse response test and forecast error variance decomposition are employed to strengthen the results of short-run relationship. The dynamic relationships might change under different market conditions. Thus, the sample period is divided into two sub-samples in order to reveal whether the dynamic relationship varies under different market conditions. The results show that Finnish stock market has stable long-run relationship with industrial metals, indicating that there would not be diversification benefits among the industrial metals. The long-run relationship between Finnish stock market and energy commodities is not as stable as the long-run relationship between Finnish stock market and industrial metals. Long-run relationship was found in the full sample period and first sub-sample which indicate less room for diversification. However, the long-run relationship disappeared in the second sub-sample which indicates diversification benefits. Long-run relationship between Finnish stock market and agricultural commodities was not found in the full sample period which indicates diversification benefits between the variables. However, long-run relationship was found from both sub-samples. The best diversification benefits would be achieved if investor invested in precious metals. No long-run relationship was found from either sample. In the full sample period OMX Helsinki had short-run relationship with most of the energy commodities and industrial metals and the causality was mostly running from equities to commodities. During the first sub period the number of short-run relationships and causality shrunk but during the crisis period the number of short-run relationships and causality increased. The most notable result found was unidirectional causality from gold to OMX Helsinki during the crisis period.
Resumo:
Extensive literature shows that analysts’ forecasts and recommendations are often biased. Thus, it is important for the financial market to be able to recognize this bias to be able to correctly valuate public companies. This thesis uses characteristic approach, which was introduced by So (2013, pp. 615-640), to forecast analysts’ forecast errors and tests if predictable forecast error is fully incorporated into share prices. Data is collected of listed Finnish companies. Thesis’ timeframe spans over ten years from 2004 to 2013 consisting of 788 firm-years. Although there is earlier evidence that the characteristic approach is able to predict analysts’ forecast errors, no support for this is found in the Finnish market. This thesis contributes to the current knowledge by showing that the characteristic approach does not work universally as such but requires development to work especially in the smaller markets.
Resumo:
The analysis-error variance of a 3D-FGAT assimilation is examined analytically using a simple scalar equation. It is shown that the analysis-error variance may be greater than the error variances of the inputs. The results are illustrated numerically with a scalar example and a shallow-water model.
Resumo:
Given the significance of forecasting in real estate investment decisions, this paper investigates forecast uncertainty and disagreement in real estate market forecasts. Using the Investment Property Forum (IPF) quarterly survey amongst UK independent real estate forecasters, these real estate forecasts are compared with actual real estate performance to assess a number of real estate forecasting issues in the UK over 1999-2004, including real estate forecast error, bias and consensus. The results suggest that real estate forecasts are biased, less volatile compared to market returns and inefficient in that forecast errors tend to persist. The strongest finding is that real estate forecasters display the characteristics associated with a consensus indicating herding.
Resumo:
Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.
Resumo:
In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.
Resumo:
For data assimilation in numerical weather prediction, the initial forecast-error covariance matrix Pf is required. For variational assimilation it is particularly important to prescribe an accurate initial matrix Pf, since Pf is either static (in the 3D-Var case) or constant at the beginning of each assimilation window (in the 4D-Var case). At large scales the atmospheric flow is well approximated by hydrostatic balance and this balance is strongly enforced in the initial matrix Pf used in operational variational assimilation systems such as that of the Met Office. However, at convective scales this balance does not necessarily hold any more. Here we examine the extent to which hydrostatic balance is valid in the vertical forecast-error covariances for high-resolution models in order to determine whether there is a need to relax this balance constraint in convective-scale data assimilation. We use the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and a 1.5 km resolution version of the Unified Model for a case study characterized by the presence of convective activity. An ensemble of high-resolution forecasts valid up to three hours after the onset of convection is produced. We show that at 1.5 km resolution hydrostatic balance does not hold for forecast errors in regions of convection. This indicates that in the presence of convection hydrostatic balance should not be enforced in the covariance matrix used for variational data assimilation at this scale. The results show the need to investigate covariance models that may be better suited for convective-scale data assimilation. Finally, we give a measure of the balance present in the forecast perturbations as a function of the horizontal scale (from 3–90 km) using a set of diagnostics. Copyright © 2012 Royal Meteorological Society and British Crown Copyright, the Met Office