938 resultados para Floors, Concrete


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Includes appendices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"August 1987."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much effort is being expended by various state, federal, and private organizations relative to the protection and preservation of concrete bridge floors. The generally recognized culprit is the chloride ion, from the deicing salt, reaching the reinforcing steel, and along with water and oxygen, causing corrosion. The corrosion process exerts pressure which eventually causes cracks and spalls in the bridge floor. The reinforcing· has been treated and coated, various types of "waterproof" membranes have been placed on the deck surface, decks have been surfaced with dense and modified concretes, decks have been electrically protected, and attempts to internally seal the concrete have been made. As of yet, no one method has been proven and accepted by the various government agencies as being the "best" when considering the initial cost, application effort, length and effectiveness of protection, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows the results of an experimental investigation carried out on a connection element of glulam and concrete composite structures, through double-sided push-out shear tests. The connection system was composed of perforated steel plates glued with epoxy adhesive. Five specimens were made and tested under shear forces. This innovative connection system showed an average initial slip modulus equivalent to 339.4 kN/mm. In addition, the connection system was evaluated by means of numerical simulations and the software ANSYS was used for this purpose. The numerical simulations demonstrated good agreement with the experimental data, especially in the regime of elastic-linear behavior of materials. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL) was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL) was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis is studied the long-term behaviour of steel reinforced slabs paying particular attention to the effects due to shrinkage and creep. Despite the universal popularity of using this kind of slabs for simply construction floors, the major world codes focus their attention in a design based on the ultimate limit state, restraining the exercise limit state to a simply verification after the design. For Australia, on the contrary, this is not true. In fact, since this country is not subjected to seismic effects, the main concern is related to the long-term behaviour of the structure. Even if there are a lot of studies about long-term effects of shrinkage and creep, up to date, there are not so many studies concerning the behaviour of slabs with a cracked cross section and how shrinkage and creep influence it. For this reason, a series of ten full scale reinforced slabs was prepared and monitored under laboratory conditions to investigate this behaviour. A wide range of situations is studied in order to cover as many cases as possible, as for example the use of a fog room able to reproduce an environment of 100% humidity. The results show how there is a huge difference in terms of deflections between the case of slabs which are subjected to both shrinkage and creep effects soon after the partial cracking of the cross section, and the case of slabs which have already experienced shrinkage effects for several weeks, when the section has not still cracked, and creep effects only after the cracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three types of crushed rock aggregate were appraised, these being Carboniferous Sandstone, Magnesian Limestone and Jurassic Limestone. A comprehensive aggregate testing programme assessed the properties of these materials. Two series of specimen slabs were cast and power finished using recognised site procedures to assess firstly the influence of these aggregates as the coarse fraction, and secondly as the fine fraction. Each specimen slab was tested at 28 days under three regimes to simulate 2-body abrasion, 3-body abrasion and the effect of water on the abrasion of concrete. The abrasion resistance was measured using a recognised accelerated abrasion testing apparatus employing rotating steel wheels. Relationships between the aggregate and concrete properties and the abrasion resistance have been developed with the following properties being particularly important - Los Angeles Abrasion and grading of the coarse aggregate, hardness of the fine aggregate and water-cement ratio of the concrete. The sole use of cube strength as a measure of abrasion resistance has been shown to be unreliable by this work. A graphical method for predicting the potential abrasion resistance of concrete using various aggregate and concrete properties has been proposed. The effect of varying the proportion of low-grade aggregate in the mix has also been investigated. Possible mechanisms involved during abrasion have been discussed, including localised crushing and failure of the aggregate/paste bond. Aggregates from each of the groups were found to satisfy current specifications for direct finished concrete floors. This work strengthens the case for the increased use of low-grade aggregates in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This exploratory study is concerned with the integrated appraisal of multi-storey dwelling blocks which incorporate large concrete panel systems (LPS). The first step was to look at U.K. multi-storey dwelling stock in general, and under the management of Birmingham City Council in particular. The information has been taken from the databases of three departments in the City of Birmingham, and rearranged in a new database using a suite of PC software called `PROXIMA' for clarity and analysis. One hundred of their stock were built large concrete panel system. Thirteen LPS blocks were chosen for the purpose of this study as case-studies depending mainly on the height and age factors of the block. A new integrated appraisal technique has been created for the LPS dwelling blocks, which takes into account the most physical and social factors affecting the condition and acceptability of these blocks. This appraisal technique is built up in a hierarchical form moving from the general approach to particular elements (a tree model). It comprises two main approaches; physical and social. In the physical approach, the building is viewed as a series of manageable elements and sub-elements to cover every single physical or environmental factor of the block, in which the condition of the block is analysed. A quality score system has been developed which depends mainly on the qualitative and quantitative conditions of each category in the appraisal tree model, and leads to physical ranking order of the study blocks. In the social appraisal approach, the residents' satisfaction and attitude toward their multi-storey dwelling block was analysed in relation to: a. biographical and housing related characteristics; and b. social, physical and environmental factors associated with this sort of dwelling, block and estate in general.The random sample consisted of 268 residents living in the 13 case study blocks. Data collected was analysed using frequency counts, percentages, means, standard deviations, Kendall's tue, r-correlation coefficients, t-test, analysis of variance (ANOVA) and multiple regression analysis. The analysis showed a marginally positive satisfaction and attitude towards living in the block. The five most significant factors associated with the residents' satisfaction and attitude in descending order were: the estate, in general; the service categories in the block, including heating system and lift services; vandalism; the neighbours; and the security system of the block. An important attribute of this method, is that it is relatively inexpensive to implement, especially when compared to alternatives adopted by some local authorities and the BRE. It is designed to save time, money and effort, to aid decision making, and to provide ranked priority to the multi-storey dwelling stock, in addition to many other advantages. A series of solution options to the problems of the block was sought for selection and testing before implementation. The traditional solutions have usually resulted in either demolition or costly physical maintenance and social improvement of the blocks. However, a new solution has now emerged, which is particularly suited to structurally sound units. The solution of `re-cycling' might incorporate the reuse of an entire block or part of it, by removing panels, slabs and so forth from the upper floors in order to reconstruct them as low-rise accommodations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber-reinforced concrete is a composite material consisting of discrete, discontinuous, and uniformly distributed fibers in plain concrete primarily used to enhance the tensile properties of the concrete. FRC performance depends upon the fiber, interface, and matrix properties. The use of fiber-reinforced concrete has been increasing substantially in the past few years in different fields of the construction industry such as ground-level application in sidewalks and building floors, tunnel lining, aircraft parking, runways, slope stabilization, etc. Many experiments have been performed to observe the short-term and long-term mechanical behavior of fiber-reinforced concrete in the last decade and numerous numerical models have been formulated to accurately capture the response of fiber-reinforced concrete. The main purpose of this dissertation is to numerically calibrate the short-term response of the concrete and fiber parameters in mesoscale for the three-point bending test and cube compression test in the MARS framework which is based on the lattice discrete particle model (LDPM) and later validate the same parameters for the round panels. LDPM is the most validated theory in mesoscale theories for concrete. Different seeds representing the different orientations of concrete and fiber particles are simulated to produce the mean numerical response. The result of numerical simulation shows that the lattice discrete particle model for fiber-reinforced concrete can capture results of experimental tests on the behavior of fiber-reinforced concrete to a great extent.