991 resultados para Flat industrial modeling
Resumo:
The work shows the importance of process modeling in industrial flat field fashion design. This was achieved by a qualitative study identifying vision of modelers, students and teachers about this stage of development and production clothing product in the regional center of Londrina – PR. This research allowed the development of methodological guidelines for the teaching and preparation Modeling Industrial flat clothing.
Resumo:
Pós-graduação em Design - FAAC
Resumo:
O suprimento de tomates para processamento industrial é uma atividade relativamente complexa. Plantas industriais de larga escala necessitam de elevados volumes diários de matéria-prima. Por outro lado, há alta perecibilidade dos frutos e a colheita ainda é predominantemente manual. Um modelo matemático foi desenvolvido com o propósito de entender objetivamente o processo de suprimento de tomate e, também, vislumbrar possibilidades de sua otimização. A simulação a partir do modelo pode gerar cenários que, quando comparados com o desempenho efetivamente observado em campo, evidenciam a importância da gestão acurada, com a presença de potenciais ganhos financeiros expressivos na cadeia de suprimentos a partir da redução de tempos, perdas e custos. As perdas de produto poderiam ser reduzidas de mais de 2% para algo inferior a 1%. A menor capacidade ociosa traduzir-se-ia em um menor custo de oportunidade e aumento de receita. Para uma fábrica com um consumo de tomates de 336 mil toneladas por ano, a melhoria no suprimento de matéria-prima poderia resultar em ganhos estimados em R$ 6 milhões por ano.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
The main purpose of the poster is to present how the Unified Modeling Language (UML) can be used for diagnosing and optimizing real industrial production systems. By using a car radios production line as a case study, the poster shows the modeling process that can be followed during the analysis phase of complex control applications. In order to guarantee the continuity mapping of the models, the authors propose some guidelines to transform the use cases diagrams into a single object diagram, which is the main diagram for the next phases of the development.
Resumo:
Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.
Resumo:
Fireside deposits can be found in many types of utility and industrial furnaces. The deposits in furnaces are problematic because they can reduce heat transfer, block gas paths and cause corrosion. To tackle these problems, it is vital to estimate the influence of deposits on heat transfer, to minimize deposit formation and to optimize deposit removal. It is beneficial to have a good understanding of the mechanisms of fireside deposit formation. Numerical modeling is a powerful tool for investigating the heat transfer in furnaces, and it can provide valuable information for understanding the mechanisms of deposit formation. In addition, a sub-model of deposit formation is generally an essential part of a comprehensive furnace model. This work investigates two specific processes of fireside deposit formation in two industrial furnaces. The first process is the slagging wall found in furnaces with molten deposits running on the wall. A slagging wall model is developed to take into account the two-layer structure of the deposits. With the slagging wall model, the thickness and the surface temperature of the molten deposit layer can be calculated. The slagging wall model is used to predict the surface temperature and the heat transfer to a specific section of a super-heater tube panel with the boundary condition obtained from a Kraft recovery furnace model. The slagging wall model is also incorporated into the computational fluid dynamics (CFD)-based Kraft recovery furnace model and applied on the lower furnace walls. The implementation of the slagging wall model includes a grid simplification scheme. The wall surface temperature calculated with the slagging wall model is used as the heat transfer boundary condition. Simulation of a Kraft recovery furnace is performed, and it is compared with two other cases and measurements. In the two other cases, a uniform wall surface temperature and a wall surface temperature calculated with a char bed burning model are used as the heat transfer boundary conditions. In this particular furnace, the wall surface temperatures from the three cases are similar and are in the correct range of the measurements. Nevertheless, the wall surface temperature profiles with the slagging wall model and the char bed burning model are different because the deposits are represented differently in the two models. In addition, the slagging wall model is proven to be computationally efficient. The second process is deposit formation due to thermophoresis of fine particles to the heat transfer surface. This process is considered in the simulation of a heat recovery boiler of the flash smelting process. In order to determine if the small dust particles stay on the wall, a criterion based on the analysis of forces acting on the particle is applied. Time-dependent simulation of deposit formation in the heat recovery boiler is carried out and the influence of deposits on heat transfer is investigated. The locations prone to deposit formation are also identified in the heat recovery boiler. Modeling of the two processes in the two industrial furnaces enhances the overall understanding of the processes. The sub-models developed in this work can be applied in other similar deposit formation processes with carefully-defined boundary conditions.
Resumo:
In the present work, liquid-solid flow in industrial scale is modeled using the commercial software of Computational Fluid Dynamics (CFD) ANSYS Fluent 14.5. In literature, there are few studies on liquid-solid flow in industrial scale, but any information about the particular case with modified geometry cannot be found. The aim of this thesis is to describe the strengths and weaknesses of the multiphase models, when a large-scale application is studied within liquid-solid flow, including the boundary-layer characteristics. The results indicate that the selection of the most appropriate multiphase model depends on the flow regime. Thus, careful estimations of the flow regime are recommended to be done before modeling. The computational tool is developed for this purpose during this thesis. The homogeneous multiphase model is valid only for homogeneous suspension, the discrete phase model (DPM) is recommended for homogeneous and heterogeneous suspension where pipe Froude number is greater than 1.0, while the mixture and Eulerian models are able to predict also flow regimes, where pipe Froude number is smaller than 1.0 and particles tend to settle. With increasing material density ratio and decreasing pipe Froude number, the Eulerian model gives the most accurate results, because it does not include simplifications in Navier-Stokes equations like the other models. In addition, the results indicate that the potential location of erosion in the pipe depends on material density ratio. Possible sedimentation of particles can cause erosion and increase pressure drop as well. In the pipe bend, especially secondary flows, perpendicular to the main flow, affect the location of erosion.
Resumo:
This paper presents numerical modeling of a turbulent natural gas flow through a non-premixed industrial burner of a slab reheating furnace. The furnace is equipped with diffusion side swirl burners capable of utilizing natural gas or coke oven gas alternatively through the same nozzles. The study is focused on one of the burners of the preheating zone. Computational Fluid Dynamics simulation has been used to predict the burner orifice turbulent flow. Flow rate and pressure at burner upstream were validated by experimental measurements. The outcomes of the numerical modeling are analyzed for the different turbulence models in terms of pressure drop, velocity profiles, and orifice discharge coefficient. The standard, RNG, and Realizable k-epsilon models and Reynolds Stress Model (RSM) have been used. The main purpose of the numerical investigation is to determine the turbulence model that more consistently reproduces the experimental results of the flow through an industrial non-premixed burner orifice. The comparisons between simulations indicate that all the models tested satisfactorily and represent the experimental conditions. However, the Realizable k-epsilon model seems to be the most appropriate turbulence model, since it provides results that are quite similar to the RSM and RNG k-epsilon models, requiring only slightly more computational power than the standard k-epsilon model. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.
Resumo:
Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor.