954 resultados para European Reaction Force
Resumo:
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.
Resumo:
OBJECTIVES: To evaluate and compare long-term functional outcome after partial carpal arthrodesis and pancarpal arthrodesis in dogs using kinetic gait analysis. METHODS: Fourteen dogs with 19 partial carpal or pancarpal arthrodeses were retrospectively examined and underwent force-plate gait analysis. Mean times since surgery were 29.4 and 24.4 months for pancarpal and partial carpal arthrodesis respectively. Vertical and braking-propulsive ground reaction force profiles were compared between treatment groups, and to those of normal dogs (control group) using Kruskal-Wallis one-way analysis of variance. RESULTS: With the exception of time to vertical peak that occurred earlier in dogs with pancarpal than in dogs with partial carpal arthrodesis (p <0.01), there was no difference between the two treatment groups. Several parameters differed significantly between operated and healthy dogs (p <0.01): vertical impulses were significantly lower in both treatment groups, braking forces and impulses were also reduced after both techniques. Propulsive forces and impulses were only reduced in dogs with pancarpal arthrodesis. When comparing gait parameters of sound limbs of unilateral operated dogs to those of control dogs, braking forces and impulses (p <0.01; p <0.05) were significantly higher in the sound legs of unilateral operated dogs. CLINICAL SIGNIFICANCE: Long-term outcome after partial carpal and pancarpal arthrodesis is good and comparable to each other. Propulsive action may be altered more in dogs with pancarpal arthrodesis.
Resumo:
"Thèse présentée à la Faculté des études supérieures en vue de l'obtention du grade de Docteur en droit (LL.D) et à l'Université Jean Moulin en vue de l'obtention du grade de Docteur en droit"
Resumo:
The aims of the present study were to determine the effect of firefighter's boots on the vertical component of the ground reaction force (GRF) at heel strike, also known as heel strike transient and to analyze the effect of the viscoelastic insoles placed into the firefighter’s boots on this force during the gait. The magnitude of the impact force (FZI) from the vertical ground reaction force, the time to the production of this force (TZI) and the loading rate (GC) were registered. 39 firefighters without any pathology during 2 years before the study were recruited. Three different walking conditions were tested: 1) gait with firefighter's boots, 2) gait with firefighter's boots and viscoelastic insoles and 3) gait with sport shoes. The results showed a higher production and magnitude of the impact force during gait with firefighter's boots than during gait with sport shoes (13,1 vs. 2,6 % of occurrence of the impact force and 61,39 ± 35,18 %BW (body weight) vs. 49,38 ± 22,99 %BW, respectively). The gait with viscoelastic insoles placed into the firefighter's boots did not show significant differences in any of the parameters characterizing the impact force compared to the gait without insoles. The results of this study show a lower cushioning of the impact force during the gait with firefighter's boots in comparison to the gait with sport shoes and the inefficiency of the viscoelastic insoles placed inside the firefighter's boots to ameliorate the cushioning of the impact force at natural walking speed.
Resumo:
The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.
Resumo:
Objectives: To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Design: Controlled laboratory study, longitudinal. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. Results: The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Conclusions: The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy.
Resumo:
Introduction: Eccentric exercise (EE) is a commonly used treatment for Achilles tendinopathy. While vibrations in the 8–12 Hz frequency range generated during eccentric muscle actions have been put forward as a potential mechanism for the beneficial effect of EE, optimal loading parameters required to expedite recovery are currently unknown. Alfredson's original protocol employed 90 repetitions of eccentric loading, however abbreviated protocols consisting of fewer repetitions (typically 45) have been developed, albeit with less beneficial effect. Given that 8–12 Hz vibrations generated during isometric muscle actions have been previously shown to increase with fatigue, this research evaluated the effect of exercise repetition on motor output vibrations generated during EE by investigating the frequency characteristics of ground reaction force (GRF) recorded throughout the 90 repetitions of Alfredson's protocol. Methods: Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. GRF was recorded at a frequency of 1000 Hz throughout the exercise protocol. The frequency power spectrum of the resultant GRF was calculated and normalized to total power. Relative spectral power was summed over 1 Hz widows within the frequency rage 7.5–11.5 Hz. The effect of each additional exercise set (15 repetitions) on the relative power within each widow was investigated using a general linear modelling approach. Results: The magnitude of peak relative power within the 7.5–11.5 Hz bandwidth increased across the six exercise sets from 0.03 in exercise set one to 0.12 in exercise set six (P < 0.05). Following the 4th set of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. Discussion: This study has demonstrated that successive repetitions of eccentric loading over six exercise sets results in an increase in the amplitude of motor output vibrations in the 7.5–11.5 Hz bandwidth, with an increase in the frequency of these vibrations occurring after the 4th set (60th repetition). These findings are consistent with findings from previous studies of muscle fatigue. Assuming that the magnitude and frequency of these vibrations represent important stimuli for tendon remodelling as hypothesized within the literature, the findings of this study question the role of abbreviated EE protocols and raise the question; can EE protocols for tendinopathy be optimized by performing eccentric loading to fatigue?
Resumo:
Introduction Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterised by greater power in the 8-12Hz bandwidth when compared to that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy., Methods Eleven male adults with unilateral mid-portion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Results Eccentric exercise was characterised by a significantly greater proportion of spectral power between 4.5 and 11.5Hz when compared to concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9Hz, rather than 10Hz in the control limb. Conclusions Compared to healthy tendon, Achilles tendinopathy was characterised by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness which have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons., (C)2012The American College of Sports Medicine
Resumo:
This thesis is a study on controlling methods for six-legged robots. The study is based on mathematical modeling and simulation. A new joint controller is proposed and tested in simulation that uses joint angles and leg reaction force as inputs to generate a torque, and a method to optimise this controller is formulated and validated. Simulation shows that hexapod can walk on flat ground based on PID controllers with just four target configurations and a set of leg coordination rules, which provided the basis for the design of the new controller.
Resumo:
Rowers have and accrue greater lumbar spine bone mineral density (BMD) associated with mechanical loading produced during rowing. The aim of this study was to estimate the mechanical loading generated at the lumbar spine (LS) that is apparently providing an osteogenic benefit. The cohort comprised 14 female rowers (average age: 19.7yrs; height: 170.9 cm, weight: 59.5 kg) and 14 female matched controls (average age: 20.9 m yrs; height: 167.5 cm; weight: 58.1 kg). BMD was assessed using the Hologic QDR 2000+ bone densitometer, indicating higher lumbar spine BMD in the rowers compared to the control subjects (1,069 +/- 0.1 vs. 1,027 +/- 0.1 g/cm2). No significant difference existed for BMD at any other site. All rowers performed a six-minute simulated race on a Concept II rowing ergometer. Mechanical loading generated at the lumbar spine during this task was assessed using a two-dimensional model of the spine, enabling the calculation of the compressive and shear forces at L4/L5. The shear force was the joint reaction force perpendicular to the spine at the L4/L5 joint. Peak compressive and shear force at the lumbar spine of the rowers were 2,694 +/- 609 (N) and 660 +/- 117 (N), respectively. Peak compressive force at the LS relative to body weight was 4.6 times body weight. The literature would suggest that forces of this magnitude, generated at the LS during maximal rowing, may be contributing to the site specific higher LS BMD found in the rowers.
Resumo:
Les modèles animaux d’arthrose permettent d’évaluer le potentiel d’agents thérapeutiques en phase préclinique de développement. Le présent ouvrage tient compte du chien comme modèle d’arthrose naturelle (chez l’animal de compagnie) ou expérimentale (par sectionnement chirurgical du ligament croisé crânial). Au sein des expérimentations, la force de réaction au sol verticale maximale, mesurée lors de l’analyse cinétique de la locomotion, est proposée comme témoin d’effets fonctionnels et structuraux sur ces modèles d’arthrose. Sur un modèle canin d’arthrose naturelle, le seuil de changement minimal détectable a été déterminé. Les changements au dysfonctionnement locomoteur peuvent désormais être cernés en s’affranchissant de la marge d’erreur inhérente à la mesure de la force verticale maximale. Il en découle l’identification de répondants lors d’essais cliniques entrepris chez le chien arthrosique. Une analyse rétrospective a, par la suite, déterminé un taux de répondants de 62.8% et d’une taille d’effet de 0.7 pour des approches thérapeutiques actuellement proposées aux chiens arthrosiques. Cette analyse détermina également que la démonstration d’une réponse thérapeutique était favorisée en présence d’un fort dysfonctionnement locomoteur. Sur un modèle canin d’arthrose par sectionnement chirurgical du ligament croisé crânial, la force verticale maximale a démontré une relation inverse avec certains types de lésions arthrosiques évaluées à l’aide d’imagerie par résonance magnétique. Également, la sensibilité de la force verticale maximale a été mise en évidence envers la détection d’effets structuraux, au niveau de l’os sous-chondral, par un agent anti-résorptif (le tiludronate) sur ce même modèle. Les expérimentations en contexte d’arthrose naturelle canine permettent de valider davantage les résultats d’essais cliniques contrôlés utilisant la force verticale maximale comme critère d’efficacité fonctionnelle. Des évidences cliniques probantes nécessaires à la pratique d’une médecine basée sur des faits sont ainsi escomptées. En contexte d’arthrose expérimentale, la pertinence d’enregistrer le dysfonctionnement locomoteur est soulignée, puisque ce dernier est en lien avec l’état des structures. En effectuant l’analyse de la démarche, de pair avec l’évaluation des structures, il est escompté de pouvoir établir la répercussion de bénéfices structurels sur l’inconfort articulaire. Cet ouvrage suggère qu’une plateforme d’investigations précliniques, qui combine le modèle canin d’arthrose par sectionnement chirurgical du ligament croisé crânial à un essai clinique chez le chien arthrosique, soit un moyen de cerner des bénéfices structuraux ayant des impacts fonctionnels. Le potentiel inférentiel de ces modèles canins d’arthrose vers l’Homme serait ainsi favorisé en utilisant la force verticale maximale.
Resumo:
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test-retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69±5years) and thirty young adults (age: 21±4years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test-retest reliability of these measures was found to be acceptable (ICC: 0.40-0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from -0.16 to -0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults. © 2013 Elsevier Ltd.