1000 resultados para Ensino de geometria
Resumo:
This present research the aim to show to the reader the Geometry non-Euclidean while anomaly indicating the pedagogical implications and then propose a sequence of activities, divided into three blocks which show the relationship of Euclidean geometry with non-Euclidean, taking the Euclidean with respect to analysis of the anomaly in non-Euclidean. PPGECNM is tied to the line of research of History, Philosophy and Sociology of Science in the Teaching of Natural Sciences and Mathematics. Treat so on Euclid of Alexandria, his most famous work The Elements and moreover, emphasize the Fifth Postulate of Euclid, particularly the difficulties (which lasted several centuries) that mathematicians have to understand him. Until the eighteenth century, three mathematicians: Lobachevsky (1793 - 1856), Bolyai (1775 - 1856) and Gauss (1777-1855) was convinced that this axiom was correct and that there was another geometry (anomalous) as consistent as the Euclid, but that did not adapt into their parameters. It is attributed to the emergence of these three non-Euclidean geometry. For the course methodology we started with some bibliographical definitions about anomalies, after we ve featured so that our definition are better understood by the readers and then only deal geometries non-Euclidean (Hyperbolic Geometry, Spherical Geometry and Taxicab Geometry) confronting them with the Euclidean to analyze the anomalies existing in non-Euclidean geometries and observe its importance to the teaching. After this characterization follows the empirical part of the proposal which consisted the application of three blocks of activities in search of pedagogical implications of anomaly. The first on parallel lines, the second on study of triangles and the third on the shortest distance between two points. These blocks offer a work with basic elements of geometry from a historical and investigative study of geometries non-Euclidean while anomaly so the concept is understood along with it s properties without necessarily be linked to the image of the geometric elements and thus expanding or adapting to other references. For example, the block applied on the second day of activities that provides extend the result of the sum of the internal angles of any triangle, to realize that is not always 180° (only when Euclid is a reference that this conclusion can be drawn)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação - FFC
Resumo:
Research partly motivated by Lewis Carroll's Euclid and his modern rivals (1879) portuguese translation, this paper presents some hermeneutical remarks taken as necessary to understand the context in which such book was produced. The paper focuses particularly on education, in general, and on the teaching of mathematics and Geometry in victorian England.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Docência para a Educação Básica - FC
Resumo:
Apresenta-se neste trabalho experiências obtidas através de 06 (seis) anos consecutivos de trabalho com a disciplina de Geometria Espacial em turmas de formação inicial de professores de matemática. A proposta de trabalho em grupos colaborativos se justifica pela necessidade atual de os professores em atividade utilizarem essa poderosa ferramenta como facilitadora da aprendizagem pessoal e dos estudantes sob sua orientação. Os alunos das várias turmas foram desafiados à tarefa de apresentarem, ao final da disciplina (semestre), um trabalho contendo: material escrito (capa, formatação, desenvolvimento do tema, cálculos, desenhos, resultados e referências), material concreto produzido com canudos e fitilho (sólidos construídos: acabamento, uniformização, montagem e medidas) e apresentação oral do grupo (arquivos de programas de apresentação). A metodologia proposta para a realização dessa tarefa em todas as turmas foi de grupos colaborativos, com em média 05 (cinco) alunos cada. Para a 1ª turma foi proposta a construção de “esqueletos” dos poliedros de Platão, com a maior aresta (canudinho) fixada. Cada grupo deveria observar uma propriedade dentre as seguintes: sólidos com a mesma área total; com o mesmo volume; com uma mesma esfera inscrita e com uma mesma esfera circunscrita. Todo material coletado dos grupos (escrito, construído ou digital/apresentação oral), está sendo devidamente catalogado, para então ser disponibilizado no Laboratório de Ensino de Matemática do referido curso. Os trabalhos propostos posteriormente foram gradativamente sendo mais desafiadores. O último trabalho proposto (2012) teve o seguinte tema: Poliedros Arquimedianos ou semirregulares.
Resumo:
This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids
Resumo:
This qualitative nature of work was developed with the participation of a group of students enrolled in the first year of high school from a public school of the state of São Paulo, in the city of Taubaté. Their goal was to determine how students deal with geometry tasks in investigative classes. To guide this research was drawn up the following question: As students of the first year of high school express their knowledge of building triangles and quads in classes of investigative activities?. The choice of investigative nature of this activity occurred by enhancing student participation and thus generate a greater chance of it not be guided only by what the teacher wants, but by his own curiosity and using their own tools for this. In the data analysis process stands out the interest generated in students for this type of activity and posture maintained throughout the work, mobilizing their expertise to answer the questions posed