933 resultados para Empirical risk
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
A presente monografia tem como objetivo identificar, avaliar e, por fim, sugerir mecanismos de controle dos Riscos inerentes aos processos de Licenciamento Ambiental realizados no âmbito do Instituto de Estadual do Ambiente – INEA
Resumo:
* Работа выполнена при поддержке РФФИ, гранты 07-01-00331-a и 08-01-00944-a
Resumo:
We review the literature on the impact of litigation risk (a form of external governance) on corporate prospective disclosure decisions as reflected in management earnings forecasts. From this analysis we identify four key areas for future research. First, litigation risk warrants more attention from researchers; currently it tends to be treated as a secondary factor impacting MEF decisions. Second, it would be informative from a governance perspective for researchers to explore why litigation risk has a differential impact on MEF decisions across countries. Third, understanding the interaction between litigation risk and forecast/firm-specific characteristics is important from management, investor and regulatory perspectives but is currently under-explored Last, research on the litigation risk and MEF attributes link is piecemeal and incomplete, requiring more integrated and expanded analysis.
Resumo:
Financing trade between economic agents located in different countries is affected by many types of risks, resulting from incomplete information about the debtor, the problems of enforcing international contracts, or the prevalence of political and financial crises. Trade is important for economic development and the availability of trade finance is essential, especially for developing countries. Relatively few studies treat the topic of political risk, particularly in the context of international lending. This thesis explores new ground to identify links between political risk and international debt defaults. The core hypothesis of the study is that the default probability of debt increases with increasing political risk in the country of the borrower. The thesis consists of three essays that support the hypothesis from different angles of the credit evaluation process. The first essay takes the point of view of an international lender assessing the credit risk of a public borrower. The second investigates creditworthiness assessment of companies. The obtained results are substantiated in the third essay that deals with an extensive political risk survey among finance professionals in developing countries. The financial instruments of core interest are export credit guaranteed debt initiated between the Export Credit Agency of Finland and buyers in 145 countries between 1975 and 2006. Default events of the foreign credit counterparts are conditioned on country-specific macroeconomic variables, corporate-specific accounting information as well as political risk indicators from various international sources. Essay 1 examines debt issued to government controlled institutions and conditions public default events on traditional macroeconomic fundamentals, in addition to selected political and institutional risk factors. Confirming previous research, the study finds country indebtedness and the GDP growth rate to be significant indicators of public default. Further, it is shown that public defaults respond to various political risk factors. However, the impact of the risk varies between countries at different stages of economic development. Essay 2 proceeds by investigating political risk factors as conveivable drivers of corporate default and uses traditional accounting variables together with new political risk indicators in the credit evaluation of private debtors. The study finds links between corporate default and leverage, as well as between corporate default and the general investment climate and measeures of conflict in the debtor country. Essay 3 concludes the thesis by offering survey evidence on the impact of political risk on debt default, as perceived and experienced by 103 finance professionals in 38 developing countries. Taken together, the results of the thesis suggest that various forms of political risk are associated with international debt defaults and continue to pose great concerns for both international creditors and borrowers in developing countries. The study provides new insights on the importance of variable selection in country risk analysis, and shows how political risk is actually perceived and experienced in the riskier, often lower income countries of the global economy.
Resumo:
This paper uses the Value-at-Risk approach to define the risk in both long and short trading positions. The investigation is done on some major market indices(Japanese, UK, German and US). The performance of models that takes into account skewness and fat-tails are compared to symmetric models in relation to both the specific model for estimating the variance, and the distribution of the variance estimate used as input in the VaR estimation. The results indicate that more flexible models not necessarily perform better in predicting the VaR forecast; the reason for this is most probably the complexity of these models. A general result is that different methods for estimating the variance are needed for different confidence levels of the VaR, and for the different indices. Also, different models are to be used for the left respectively the right tail of the distribution.
Resumo:
Systematic liquidity shocks should affect the optimal behavior of agents in financial markets. Indeed, fluctuations in various measures of liquidity are significantly correlated across common stocks. Accordingly, this paper empirically analyzes whether Spanish average returns vary cross-sectionally with betas estimated relative to two competing liquidity risk factors. The first one, proposed by Pastor and Stambaugh (2002), is associated with the strength of volume-related return reversals. Our marketwide liquidity factor is defined as the difference between returns highly sensitive to changes in the relative bid-ask spread and returns with low sensitivities to those changes. Our empirical results show that neither of these proxies for systematic liquidity risk seems to be priced in the Spanish stock market. Further international evidence is deserved.
Resumo:
This paper considers the basic present value model of interest rates under rational expectations with two additional features. First, following McCallum (1994), the model assumes a policy reaction function where changes in the short-term interest rate are determined by the long-short spread. Second, the short-term interest rate and the risk premium processes are characterized by a Markov regime-switching model. Using US post-war interest rate data, this paper finds evidence that a two-regime switching model fits the data better than the basic model. The estimation results also show the presence of two alternative states displaying quite different features.
Resumo:
Loan mortgage interest rates are usually the result of a bank-customer negotiation process. Credit risk, consumer cross-buying potential, bundling, financial market competition and other features affecting the bargaining power of the parties could affect price. We argue that, since mortgage loan is a complex product, consumer expertise could be a relevant factor for mortgage pricing. Using data on mortgage loan prices for a sample of 1055 households for the year 2005 (Bank of Spain Survey of Household Finances, EFF-2005), and including credit risk, costs, potential capacity of the consumer to generate future business and bank competition variables, the regression results indicate that consumer expertise-related metrics are highly significant as predictors of mortgage loan prices. Other factors such as credit risk and consumer cross-buying potential do not have such a significant impact on mortgage prices. Our empirical results are affected by the credit conditions prior to the financial crisis and could shed some light on this issue.
An empirical examination of risk equalisation in a regulated community rated health insurance market
Resumo:
Despite universal access entitlements to the public healthcare system in Ireland, over half the population is covered by voluntary private health insurance. The market operates on the basis of community rating, open enrolment and lifetime cover. A set of minimum benefits also exists, and two risk equalisation schemes have been put in place but neither was implemented. These schemes have proved highly controversial. To date, the debate has primarily consisted of qualitative arguments. This study adds a quantitative element by analysing a number of pertinent issues. A model of a community rated insurance market is developed, which shows that community rating can only be maintained in a competitive market if all insurers in the market have the same risk profile as the market overall. This has relevance to the Irish market in the aftermath of a Supreme Court decision to set aside risk equalisation. Two reasons why insurers’ risk profiles might differ are adverse selection and risk selection. Evidence is found of the existence of both forms of selection in the Irish market. A move from single rate community rating to lifetime community rating in Australia had significant consequences for take-up rates and the age profile of the insured population. A similar move has been proposed in Ireland. It is found that, although this might improve the stability of community rating in the short term, it would not negate the need for risk equalisation. If community rating were to collapse then risk rating might result. A comparison of the Irish, Australian and UK health insurance markets suggests that community rating encourages higher take-up among older consumers than risk rating. Analysis of Irish hospital discharge figures suggests that this yields significant savings for the Irish public healthcare system. This thesis has implications for government policy towards private health insurance in Ireland.