972 resultados para Dynamic conditional execution
Resumo:
This thesis presents DCE, or Dynamic Conditional Execution, as an alternative to reduce the cost of mispredicted branches. The basic idea is to fetch all paths produced by a branch that obey certain restrictions regarding complexity and size. As a result, a smaller number of predictions is performed, and therefore, a lesser number of branches are mispredicted. DCE fetches through selected branches avoiding disruptions in the fetch flow when these branches are fetched. Both paths of selected branches are executed but only the correct path commits. In this thesis we propose an architecture to execute multiple paths of selected branches. Branches are selected based on the size and other conditions. Simple and complex branches can be dynamically predicated without requiring a special instruction set nor special compiler optimizations. Furthermore, a technique to reduce part of the overhead generated by the execution of multiple paths is proposed. The performance achieved reaches levels of up to 12% when comparing a Local predictor used in DCE against a Global predictor used in the reference machine. When both machines use a Local predictor, the speedup is increased by an average of 3-3.5%.
Resumo:
A Execução Condicional Dinâmica (DCE) é uma alternativa para redução dos custos relacionados a desvios previstos incorretamente. A idéia básica é buscar todos os fluxos produzidos por um desvio que obedecem algumas restrições relativas à complexidade e tamanho. Como conseqüência, um número menor de previsões é executado, e assim, um número mais baixo de desvios é incorretamente previsto. Contudo, tal como outras soluções multi-fluxo, o DCE requer uma estrutura de controle mais complexa. Na arquitetura DCE, é observado que várias réplicas da mesma instrução são despachadas para as unidades funcionais, bloqueando recursos que poderiam ser utilizados por outras instruções. Essas réplicas são geradas após o ponto de convergência dos diversos fluxos em execução e são necessárias para garantir a semântica correta entre instruções dependentes de dados. Além disso, o DCE continua produzindo réplicas até que o desvio que gerou os fluxos seja resolvido. Assim, uma seção completa do código pode ser replicado, reduzindo o desempenho. Uma alternativa natural para esse problema é reusar essas seções (ou traços) que são replicadas. O objetivo desse trabalho é analisar e avaliar a efetividade do reuso de valores na arquitetura DCE. Como será apresentado, o princípio do reuso, em diferentes granularidades, pode reduzir efetivamente o problema das réplicas e levar a aumentos de desempenho.
Characterizations of Bivariate Models Using Some Dynamic Conditional Information Divergence Measures
Resumo:
In this article, we study some relevant information divergence measures viz. Renyi divergence and Kerridge’s inaccuracy measures. These measures are extended to conditionally specifiedmodels and they are used to characterize some bivariate distributions using the concepts of weighted and proportional hazard rate models. Moreover, some bounds are obtained for these measures using the likelihood ratio order
Resumo:
In this paper we reviewed the models of volatility for a group of five Latin American countries, mainly motivated by the recent periods of financial turbulence. Our results based on high frequency data suggest that Dynamic multivariate models are more powerful to study the volatilities of asset returns than Constant Conditional Correlation models. For the group of countries included, we identified that domestic volatilities of asset markets have been increasing; but the co-volatility of the region is still moderate.
Resumo:
Revendo a definição e determinação de bolhas especulativas no contexto de contágio, este estudo analisa a bolha do DotCom nos mercados acionistas americanos e europeus usando o modelo de correlação condicional dinâmica (DCC) proposto por Engle e Sheppard (2001) como uma explicação econométrica e, por outro lado, as finanças comportamentais como uma explicação psicológica. Contágio é definido, neste contexto, como a quebra estatística nos DCC’s estimados, medidos através das alterações das suas médias e medianas. Surpreendentemente, o contágio é menor durante bolhas de preços, sendo que o resultado principal indica a presença de contágio entre os diferentes índices dos dois continentes e demonstra a presença de alterações estruturais durante a crise financeira.
Resumo:
Reviewing the de nition and measurement of speculative bubbles in context of contagion, this paper analyses the DotCom bubble in American and European equity markets using the dynamic conditional correlation (DCC) model proposed by (Engle and Sheppard 2001) as on one hand as an econometrics explanation and on the other hand the behavioral nance as an psychological explanation. Contagion is de ned in this context as the statistical break in the computed DCCs as measured by the shifts in their means and medians. Even it is astonishing, that the contagion is lower during price bubbles, the main nding indicates the presence of contagion in the di¤erent indices among those two continents and proves the presence of structural changes during nancial crisis
Resumo:
There is substantial empirical evidence that energy and financial markets are closely connected. As one of the most widely-used energy resources worldwide, natural gas has a large daily trading volume. In order to hedge the risk of natural gas spot markets, a large number of hedging strategies can be used, especially with the rapid development of natural gas derivatives markets. These hedging instruments include natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that are related to natural gas stock prices. The volatility spillover effect is the delayed effect of a returns shock in one physical, biological or financial asset on the subsequent volatility or co-volatility of another physical, biological or financial asset. Investigating volatility spillovers within and across energy and financial markets is a crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and calculates spillover effects among natural gas spot, futures and ETF markets using the multivariate conditional volatility diagonal BEKK model. The data used include natural gas spot and futures returns data from two major international natural gas derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of natural gas companies from the stock markets in the USA and UK. The empirical results show that there are significant spillover effects in natural gas spot, futures and ETF markets for both USA and UK. Such a result suggests that both natural gas futures and ETF products within and beyond the country might be considered when constructing optimal dynamic hedging strategies for natural gas spot prices.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM–test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five frequently traded stocks in the S&P 500 stock index completes the paper.
Resumo:
In this study, we propose a new semi-nonparametric (SNP) density model for describing the density of portfolio returns. This distribution, which we refer to as the multivariate moments expansion (MME), admits any non-Gaussian (multivariate) distribution as its basis because it is specified directly in terms of the basis density’s moments. To obtain the expansion of the Gaussian density, the MME is a reformulation of the multivariate Gram-Charlier (MGC), but the MME is much simpler and tractable than the MGC when positive transformations are used to produce well-defined densities. As an empirical application, we extend the dynamic conditional equicorrelation (DECO) model to an SNP framework using the MME. The resulting model is parameterized in a feasible manner to admit two-stage consistent estimation and it represents the DECO as well as the salient non-Gaussian features of portfolio return distributions. The in- and out-of-sample performance of a MME-DECO model of a portfolio of 10 assets demonstrate that it can be a useful tool for risk management purposes.
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.
Resumo:
This dissertation proposes a bivariate markov switching dynamic conditional correlation model for estimating the optimal hedge ratio between spot and futures contracts. It considers the cointegration between series and allows to capture the leverage efect in return equation. The model is applied using daily data of future and spot prices of Bovespa Index and R$/US$ exchange rate. The results in terms of variance reduction and utility show that the bivariate markov switching model outperforms the strategies based ordinary least squares and error correction models.
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
A pervasive and puzzling feature of banks’ Value-at-Risk (VaR) is its abnormally high level, which leads to excessive regulatory capital. A possible explanation for the tendency of commercial banks to overstate their VaR is that they incompletely account for the diversification effect among broad risk categories (e.g., equity, interest rate, commodity, credit spread, and foreign exchange). By underestimating the diversification effect, bank’s proprietary VaR models produce overly prudent market risk assessments. In this paper, we examine empirically the validity of this hypothesis using actual VaR data from major US commercial banks. In contrast to the VaR diversification hypothesis, we find that US banks show no sign of systematic underestimation of the diversification effect. In particular, diversification effects used by banks is very close to (and quite often larger than) our empirical diversification estimates. A direct implication of this finding is that individual VaRs for each broad risk category, just like aggregate VaRs, are biased risk assessments.