977 resultados para Diastase alpha-Amylase
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
An alpha-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The alpha-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pl value of 4.5. Temperature and pH optima were 60 degrees C and 4.0, respectively. The enzyme was stable for 1 h at 55 degrees C, showing a t(50) of 53 min at 60 degrees C. Starch protected the enzyme against thermal inactivation. The a-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of alpha-amylase on Reagen (R) and Sigma (R) starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to alpha-amylases from Bacillus sp. These results confirmed that the studied enzyme was an a-amylase ((1 -> 4)-alpha-glucan glucanohydrolase). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.
Resumo:
Aims: The aim of this study was to identify, clone and characterize the second amylase of Aeromonas hydrophila JMP636, AmyB, and to compare it to AmyA. Methods and Results: The amylase activity of A. hydrophila JMP636 is encoded by multiple genes. A second genetically distinct amylase gene, amyB, has been cloned and expressed from its own promoter in Escherichia coli. AmyB is a large alpha-amylase of 668 amino acids. Outside the conserved domains of alpha-amylases there is limited sequence relationship between the two alpha-amylases of A. hydrophila JMP636 AmyA and AmyB. Significant (80%) similarity exists between amyB and an alpha-amylase of A. hydrophila strain MCC-1. Differences in either the functional properties or activity under different environmental conditions as possible explanations for multiple copies of amylases in JMP636 is less likely after an examination of several physical properties, with each of the properties being very similar for both enzymes (optimal pH and temperature, heat instability). However the reaction end products and substrate specificity did vary enough to give a possible reason for the two enzymes being present. Both enzymes were confirmed to be alpha-type amylases. Conclusions: AmyB has been isolated, characterized and then compared to AmyA. Significance and Impact of Study: The amylase phenotype is rarely encoded by more than one enzyme within one strain, this study therefore allows the better understanding of the unusual amylase production by A. hydrophila.
Resumo:
Despite the presence of a family of defense proteins, Phaseolus vulgaris can be attacked by bruchid insects resulting in serious damage to stored grains. The two distinct active forms of a-amylase inhibitors, a-AI1 and a-AI2, in P. vulgaris show different specificity toward a-amylases. Zabrotes subfasciatus a-amylase is inhibited by a-AI2 but not by a-AI1. In contrast, porcine a-amylase is inhibited by a-AI1 but not by a-AI2. The objective of this work was to understand the molecular basis of the specificity of two inhibitors in P. vulgaris (a-AI1 and a-AI2) in relation to a-amylases. Mutants of a-AI2 were made and expressed in tobacco plants. The results showed that all the a-AI2 mutant inhibitors lost their activity against the insect a-amylases but none exhibited activity toward the mammalian a-amylase. The replacement of His33 of a-AI2 with the a-AI1-like sequence Ser-Tyr-Asn abolished inhibition of Z. subfasciatus a-amylase. From structural modeling, the conclusion is that the size and complexity of the amylase-inhibitor interface explain why mutation of the N-terminal loop and resultant abolition of Z. subfasciatus a-amylase inhibition are not accompanied by gain of inhibitory activity against porcine a-amylase.
Resumo:
PURPOSE: To assess the circadian variations in salivary immunoglobin A (sIgA) and alpha-amylase activity (sAA), biomarkers of mucosal immune function, together with mood during 2 weeks of repeated sprint training in hypoxia (RSH) and normoxia (RSN). METHODS: Over a 2-week period, 17 competitive cross-country skiers performed six training sessions, each consisting of four sets of five 10-s bouts of all-out double-poling under either normobaric hypoxia (FiO2: 13.8 %, 3000 m) or normoxia. The levels of sIgA and sAA activity and mood were determined five times during each of the first (T1) and sixth (T6) days of training, as well as during days preceding (baseline) and after the training intervention (follow-up). RESULTS: With RSH, sIgA was higher on T6 than T1 (P = 0.049), and sAA was increased on days T1, T6, and during the follow-up (P < 0.01). With RSN, sIgA remained unchanged and sAA was elevated on day T1 only (P = 0.04). Similarly, the RSH group demonstrated reduced mood on days T1, T6, and during the follow-up, while mood was lowered only on T1 with RSN (P < 0.01). CONCLUSIONS: The circadian variation of sIgA and sAA activity, biomarkers of mucosal immune function, as well as mood were similar on the first day of training when repeated double-poling sprints were performed with or without hypoxia. Only with RSH did the levels of sIgA and sAA activity rise with time, becoming maximal after six training sessions, when mood was still lowered. Therefore, six sessions of RSH reduced mood, but did not impair mucosal immune function.
Resumo:
PURPOSE: To compare salivary and serum cortisol levels, salivary alpha-amylase (sAA), and unstimulated whole saliva (UWS) flow rate in pregnant and non-pregnant women. METHOD: A longitudinal study was conducted at a health promotion center of a university hospital. Nine pregnant and 12 non-pregnant women participated in the study. Serum and UWS were collected and analyzed every trimester and twice a month during the menstrual cycle. The salivary and serum cortisol levels were determined by chemiluminescence assay and the sAA was processed in an automated biochemistry analyzer. RESULTS: Significant differences between the pregnant and non-pregnant groups were found in median [interquartile range] levels of serum cortisol (23.8 µL/dL [19.4-29.4] versus 12.3 [9.6-16.8], p<0.001) and sAA (56.7 U/L [30.9-82.2] versus 31.8 [18.1-53.2], p<0.001). Differences in salivary and serum cortisol (µL/dL) and sAA levels in the follicular versus luteal phase were observed (p<0.001). Median UWS flow rates were similar in pregnant (0.26 [0.15-0.30] mL/min) and non-pregnant subjects (0.23 [0.20-0.32] mL/min). Significant correlations were found between salivary and serum cortisol (p=0.02) and between salivary cortisol and sAA (p=0.01). CONCLUSIONS: Serum cortisol and sAA levels are increased during pregnancy. During the luteal phase of the ovarian cycle, salivary cortisol levels increase, whereas serum cortisol and sAA levels decline.
Resumo:
To evaluate the effectiveness of gibberellic acid (GA3) in breaking rice seed dormancy and the use of alpha-amylase enzyme activity as an indicator of the dormancy level, seed from the intensively dormant irrigated cultivar Urucuia were used. The seeds were submitted to a pre-drying process in a forced air circulation chamber under 40ºC during 7 days and submersed in 30 mL of GA3 solution under 0, 10, 30 and 60 mg/L H2O concentrations, during 2, 24 and 36 hours. After the treatments, the alpha-amylase activity was determined by using the polyacrilamide electrophoresis and spectrophotometry. At the same time, the germination test was made. The results indicated a gain in germination and in alpha-amylase activity in higher concentrations and soaking time of seeds in GA3. These observations support the conclusion that soaking seed in 60 mg GA3/L during 36 hours can be used as a quick and efficient treatment in breaking rice seed dormancy and is equivalent to the forced air circulation chamber at 40ºC during 7 days. The alpha-amylase enzyme activity proved to be as an efficient marker of the seeds dormancy level.
Resumo:
Microbial enzymes are in great demand owing to their importance in several industries such as brewing, baking, leather, laundry detergent, dairy. starch processing and textiles besides pharmaceuticals. About 80% of the enzymes produced through fermentation and sold in the industrial scale are hydrolytic enzymes. Due to recognition of new and new applications, an intensive screening of different kinds of enzymes with novel properties, from various microorganisms, is being pursued all over the world. Bacillus sp are largely known to produce a-amylase, among the different groups of microoganisms, at industrial level. They are known to produce both saccharifying and liquefying a-amylases (Fukumoto 1963; walker and Campbell, 1967a). which are distinguishable by their mechanisms of starch degradation by the fact that the saccharifying asamylases produce an increase in reducing power about twice that of the liquefying enzyme (Fukumoto, 1963; Pazur and Okada, 1966). Under this circumstances, the present study was undertaken, with a View to utilise a fast growing B.coagu1ans isolated from soil, for production of thermostable and alkaline oz-amylase under different fermentation processes
Resumo:
Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.
Resumo:
Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1). Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein`s biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1), showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of alpha-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian alpha-amylase activity in vitro.
Resumo:
The purpose of this study was to analyze the alpha-amylase (sAA) and cortisol levels in children with Global developmental delay (GDD) before and after dental treatment and its association with the children's behavior during treatment. The morning salivary cortisol levels and activity of sAA of 33 children with GDD were evaluated before and after dental treatment and were compared to 19 healthy children. The behavior of children with GDD during dental care was assessed by the Frankl scale. Children with GDD showed lower levels of sAA activity than healthy children, but this result was not significant. The salivary cortisol levels were similar between GOD and healthy children. GDD children showed increased levels of sAA (but not cortisol) prior to the dental treatment as compared to the post-treatment phase. GOD children who showed less favorable behavior during dental care had higher levels of sAA and salivary cortisol than GOD children with more favorable behavior, but only the sAA results were significant. In conclusion, GOD children show hyperactivity of the SNS-axis in anticipation of dental treatment which indicates the need for strategies to reduce their anxiety levels before and during dental care. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A strain of Rhizopus sp. screened among more than 800 filamentous fungi showed great ability to produce a thermostable alpha-amylase by solid state fermentation. The best production was obtained with a bran moisture content of 40% when the enzyme activity reached 60 EU/g. of medium. During the purification procedures, a column of DEAE-Sephadex A-50 separated the enzyme in two fractions and the larger (85% of the total activity) showed optimum pH in a range from 4.0 to 5.6. Optimum temperature was found at 60-65 degrees C and in this range no loss of activity was observed after 60 min. of treatment in pH 5,0. Its K-m and V-m are, respectively, of 5.0 mg/ml of starch and 10,01 uMol of reducing sugar/min./mg. of protein. Its molecular weight was calculated in 64.000 by gel filtration in Sephadex G-200. The dextrinization power of the enzyme was observed preferentialy on substrates compound by chains with higher ramifications, that is: amylopectin > starch > amylose. Other aspects of the enzyme pattern action are also discussed.
Resumo:
Corn starch, partially hydrolyzed by fungal alpha-amylase was investigated by using thermal analysis, microscopy and X-ray diffraction. After enzymatic treatment lower degradation onset temperatures were observed. DSC analysis showed almost similar range of gelatinization temperature, however, the enthalpies of gelatinization increased for the partially hydrolyzed starch granules. According to the X-ray diffraction analysis, stronger cereal pattern peaks were recognized after enzymatic digestion. The results suggested that the hydrolysis was more pronounced in the amorphous part of the starch granules.