996 resultados para Dentin Sensivity
Resumo:
Gingival recession has a high prevalence in the population. This alteration may promote several complications such as cervical dentinal hypersensitivity (HSDC), carious and non-carious cervical lesions, and cosmetic changes due to the increase of the clinical crown length. To treat HSDC there are several therapeutic possibilities that should aim to eliminate pain after external stimulus. Treatment of this alteration can be performed by a conventional or invasive procedure, depending on the clinical condition and patients' desires. In situations where aesthetics is not the main complaint and HSDC persists even after conservative procedures, it is possible to indicate a procedure to achieve root coverage in Miller's Class I and II recessions. The aim of this paper is to report a case where the HSDC was not eliminated by conventional methods, which was resolved only after performing a minimally invasive surgery that promoted total root coverage.
Resumo:
Objective The aim of this study was to test the possible involvement, relevance and significance of dentin matrix protein 1 (DMP1) in chondrocyte redifferentiation and OA. Methods To examine the function of DMP1 in vitro, bone marrow stromal cells (BMSCs) and articular chondrocytes (ACs) were isolated and differentiated in micromasses in the presence or absence of DMP1 small interfering RNA and analysed for chondrogenic phenotype. The association of DMP1 expression with OA progression was analysed time dependently in the OA menisectomy rat model and in grade-specific OA human samples. Results It was found that DMP1 was strongly related to chondrogenesis, which was evidenced by the strong expression of DMP1 in the 14.5-day mouse embryonic cartilage development stage and in femoral heads of post-natal days 0 and 4. In vitro chondrogenesis in BMSCs and ACs was accompanied by a gradual increase in DMP1 expression at both the gene and protein levels. In addition, knockdown of DMP1 expression led to decreased chondrocyte marker genes, such as COL2A1, ACAN and SOX9, and an increase in the expression of COL10A and MMP13 in ACs. Moreover, treatment with IL-1β, a well-known catabolic culprit of proteoglycan matrix loss, significantly reduced the expression of DMP1. Furthermore, we also observed the suppression of DMP1 protein in a grade-specific manner in knee joint samples from patients with OA. In the menisectomy-induced OA model, an increase in the Mankin score was accompanied by the gradual loss of DMP1 expression. Conclusion Observations from this study suggest that DMP1 may play an important role in maintaining the chondrogenic phenotype and its possible involvement in altered cartilage matrix remodelling and degradation in disease conditions like OA.
Resumo:
Imitating a real tooth and the periodontal supporting tissues, we have established a 2D finite element model and carried out a numerical analysis based on the inhomogeneous and anisotropic (IA) stress-strain relation and strength model of dentin proposed in the preceding Parts I and II, and the conventional homogeneous and isotropic (III) model, respectively. Quite a few cases of loadings for a non-defected and a defected tooth are considered. The numerical results show that the stress level predicted by the IA model is remarkably higher than that by the III model, revealing that the effect of the dentin tubules should be taken into a serious consideration from the viewpoint of biomechanics.
Resumo:
Background: Dentin phosphoprotein ( DPP) is the most abundant non-collagenous protein in dentin, which is highly phosphorylated and plays key roles in dentin biomineralisation. The aetiology of isolated hereditary dentin disorders in most affected familie
Resumo:
Fourier-transform (FT)-Raman and -infrared (IR) spectroscopy were employed to investigate the function of the aqueous 2-hydroxyethylmethacrylate/glutaraldehyde solution (Gluma) as a desensitizer. 2-Hydroxyethylmethacrylate (HEMA), glutaraldehyde (GA), and the mixture of HEMA/GA (i.e. Gluma) were used to interact with dentin, collagen, hydroxyapatite (HAP), and bovine serum albumin (BSA) individually. All the interactions were monitored by an FT-Raman spectrometer. FT-IR spectroscopy was also used in this study. The results show that HEMA could be absorbed by dentin and collagen; GA could cross-link collagen and BSA; and when BSA was added to Gluma, polymerization of HEMA occurred. The results suggest that Gluma acts as a desensitizer whereby, first, GA reacts with part of the serum albumin in dentinal fluid, which induces a precipitation of serum albumin, then, second, a reaction of GA with serum albumin induces polymerization of HEMA. The function of Gluma as a desensitizer to block dentinal tubules occurs via these two reactions.
Resumo:
Odontoblasts form the outermost cellular layer of the dental pulp where they have been proposed to act as sensory receptor cells. Despite this suggestion, evidence supporting their direct role in mediating thermo-sensation and nociception is lacking. Transient receptor potential (TRP) ion channels directly mediate nociceptive functions, but their functional expression in human odontoblasts has yet to be elucidated. In the present study, we have examined the molecular and functional expression of thermo-sensitive TRP channels in cultured odontoblast-like cells and in native human odontoblasts obtained from healthy wisdom teeth. PCR and western blotting confirmed gene and protein expression of TRPV1, TRPA1 and TRPM8 channels. Immunohistochemistry revealed that these channels were localised to odontoblast-like cells as determined by double staining with dentin sialoprotein (DSP) antibody. In functional assays, agonists of TRPV1, TRPA1 and TRPM8 channels elicited [Ca2+]i transients that could be blocked by relevant antagonists. Application of hot and cold stimuli to the cells also evoked rises in [Ca2+]i which could be blocked by TRP-channel antagonists. Using a gene silencing approached we further confirmed a role for TRPA1 in mediating noxious cold responses in odontoblasts. We conclude that human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth. Cultured and native human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth.
Resumo:
The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment X depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: To assess in vitro the shear bond strength at the resin/dentin interface in primary teeth after contamination with fresh human blood. Methods: 75 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface. The specimens were randomly assigned to five groups (n=15), according to the surface treatment. Group I (control) had no blood contamination. The other groups were blood-contaminated and subjected to different post-contamination protocols: in Group 2, the surfaces were rinsed with water; in Group 3, the surfaces were air-dried; in Group 4, the surfaces were rinsed and air-dried; and in Group 5, no post-contamination treatment was done. In all groups, a 3-mm dentin bonding site was demarcated, Single Bond adhesive system was applied and resin composite cylinders were bonded. After 24 hours in distilled water, shear bond strength was tested at a crosshead speed of 0.5 mm/minute. Results: Means (in MPa) were: Group 1: 7.1 (+/- 4.2); Group 2: 4.0 (+/- 1.8); Group 3: 0.9 (+/- 0.7); Group 4: 3.9 (+/- 2.2) and Group 5: 1.3 (+/- 1.5). Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Groups 2 and 4 were similar to each other (P > 0.05) and both ware similar to Group 1 (P > 0.05). These groups (2, 3 and 4) had statistically significantly higher bond strengths than Groups 3 and 5 (P < 0.05). Blood contamination negatively affected the shear bond strength to primary tooth dentin. Among the blood-contaminated groups, water-rinsed specimens had higher bond strengths than those that were exclusively air-dried or not submitted to any post-contamination protocol before adhesive application.
Resumo:
The aim of this study was to assess in vitro the influence of Er:YAG laser irradiation distance on the shear strength of the bond between an adhesive restorative system and primary dentin. A total of 60 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface and were randomly assigned to six groups (n = 10). The control group was etched with 37% phosphoric acid. The remaining five groups were irradiated (80 mJ, 2 Hz) at different irradiation distances (11, 12, 16, 17 and 20 mm), followed by acid etching. An adhesive agent (Single Bond) was applied to the bonding sites, and resin cylinders (Filtek Z250) were prepared. The shear bond strength tests were performed in a universal testing machine (0.5 mm/min). Data were submitted to statistical analysis using one-way ANOVA and the Kruskal-Wallis test (p < 0.05). The mean shear bond strengths were: 7.32 +/- 3.83, 5.07 +/- 2.62, 6.49 +/- 1.64, 7.71 +/- 0.66, 7.33 +/- 0.02, and 9.65 +/- 2.41 MPa in the control group and the groups irradiated at 11, 12, 16, 17, and 20 mm, respectively. The differences between the bond strengths in groups II and IV and between the bond strengths in groups II and VI were statistically significant (p < 0.05). Increasing the laser irradiation distance resulted in increasing shear strength of the bond to primary dentin.
Resumo:
The aim of this study was to evaluate in vitro the effect of different in-office bleaching systems on the surface morphology of bovine dentin. Thirty tooth fragments measuring 4 x 4mm, containing enamel and dentin, were obtained from the crowns of extracted bovine incisors. Samples were subjected to simulated intracoronal bleaching techniques using conventional (Opalescence Endo (R) and Whiteness Super Endo (R)) and light-activated systems (Opalescence Xtra (R) and Whiteness HP Maxx (R)). Controls were treated with either sodium perborate mixed with 10% hydrogen peroxide or no bleaching agent. The samples were observed under SEM and the recorded images were evaluated for topographic alterations. The ultrastructural alterations of dentin observed in this study varied greatly between groups according to the products used. Higher pH products (Whiteness HP Maxx (R) and Opalescence Xtra (R)) associated with in-office techniques yielded better maintenance of dentin ultrastructure. Apparently, both low pH and hydrogen peroxide oxidation play a role in altering the ultrastructure of dentin during internal dental bleaching. The use of alkaline products with reduced time of application (in-office techniques) may decrease such morphological alterations.
Resumo:
This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.
Resumo:
Objective. The objective of this study was to evaluate the disinfection degree of dentine caused by the use of diode laser after biomechanical procedures. Study design. Thirty teeth were sectioned and roots were autoclaved and incubated for 4 weeks with a suspension of Enterococcus faecalis. The specimens were randomly divided into 3 groups (n = 10): G1, instrumented with rotary files, irrigated with 0.5% sodium hypochlorite and 17% EDTA-T, and then irradiated by 830-nm diode laser at 3 W; G2, the same procedures as G1 but without laser irradiation; and G3, irrigation with saline solution (control). Dentin samples of each third were collected with carbide burs and aliquots were sowed to count viable cells. Results. The disinfection degree achieved was 100% in G1 and 98.39% in G2, when compared to the control group (G3). Conclusion. Diode laser irradiation provided increased disinfection of the deep radicular dentin in the parameters and samples tested.