905 resultados para Deep-level Diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines the relationship between perceived group diversity and group conflict, and the moderating role of team context. Currentiy, diversity research predominantly focuses on surface and job-related dimensions, largely to the neglect of deep-level diversity (in terms of values, attitude and beliefs). First, this research hjfpothesised that all three dimensions of diversity would be positively related to group conflict, with deep-level diversity the strongest predictor of task. conflict. Second, it was hypothesised that team context would moderate the relationship between deep-level diversity and group conflict. Team context refers to the extent to which the work performed (1) has high consequences (in terms of health and well being for team members and others); (2) is relatively isolating, (3) requires a high reliance upon team members; (4) is volatile; and (5) interpersonal attraction and mutual helpfulness is essential. Two studies were conducted. The first study employed 44 part-time employees across a range of occupations, and the second study employed 66 full-time employees from a mining company in Australia. A series of hierarchical multiple regressions and moderated multiple regressions confirmed both hypotheses. Practical implications and future research directions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While diversity might give an organization a competitive advantage, individuals have a tendency to prefer homogenous group settings. Prior research suggests that group members who are dissimilar (vs. similar) to their peers in terms of a given diversity attribute (e.g. demographics, attitudes, values or traits) feel less attached to their work group, experience less satisfying and more conflicted relationships with their colleagues, and consequently are less effective. However, prior empirical findings tend to be weak and inconsistent, and it remains unclear when, how and to what extent such differences affect group members’ social integration (i.e. attachment with their work group, satisfaction and conflicted relationships with their peers) and effectiveness. To address these issues the current study conducted a meta-analysis and integrated the empirical results of 129 studies. For demographic diversity attributes (such as gender, ethnicity, race, nationality, age, functional background, and tenure) the findings support the idea that demographic dissimilarity undermines individual member performance via lower levels of social integration. These negative effects were more pronounced in pseudo teams – i.e. work groups in which group members pursue individual goals, work on individual tasks, and are rewarded for their individual performance. These negative effects were however non-existent in real teams - i.e. work groups in which groups members pursue group goals, work on interdependent tasks, and are rewarded (at least partially) based on their work group’s performance. In contrast, for underlying psychological diversity attributes (such as attitudes, personality, and values), the relationship between dissimilarity and social integration was more negative in real teams than in pseudo teams, which in return translated into even lower individual performance. At the same time however, differences in underlying psychological attributes had an even stronger positive effect on dissimilar group member’s individual performance, when the negative effects of social integration were controlled for. This implies that managers should implement real work groups to overcome the negative effects of group member’s demographic dissimilarity. To harness the positive effects of group members’ dissimilarity on underlying psychological attributes, they need to make sure that dissimilar group members become socially integrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the detailed investigations on platinum related midgap state corresponding to E-c -0.52 eV probed by deep level transient spectroscopy. By irradiating the platinum doped samples with high-energy (1.1 MeV) gamma rays, we observed that the concentration of the midgap state increases and follows a square dependence with irradiation dose. However, the concentration of the acceptor corresponding to E-c -20.28 eV remained constant. Furthermore, from the studies on passivation by atomic hydrogen and thermal reactivation, we noticed that the E-c -0.52 eV level reappears in the samples annealed at high temperatures after hydrogenation. The interaction of platinum with various defects and the qualitative arguments based on the law of mass action suggest that the platinum related midgap defect might possibly correspond to the interstitial platinum-divacancy complex (V-Pt-V).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inexpensive and simple circuit to aid the direct measurement of majority carrier capture cross sections of impurity levels in the band gap of a semiconductor by the variable width filling pulse technique is presented. With proper synchronisation, during the period of application of the pulse, the device is disconnected from the capacitance meter to avoid distortion of the pulse and is reconnected again to the meter to record the emission transient. Modes of operation include manual triggering for long emission transients, repetitive triggering for isothermal and DLTS measurements and the DLTS mode which is to be used with signal analysers that already provide a synchronising pulse for disconnection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the two sampling gate positions, and their widths and the integrator response times on the position, height, and shape of the peaks obtained in a double‐channel gated‐integrator‐based deep‐level transient spectroscopy (DLTS) system are evaluated. The best compromise between the sensitivity and the resolution of the DLTS system is shown to be obtained when the ratio of the two sampling gate positions is about 20. An integrator response time of about 100 ms is shown to be suitable for practical values of emission time constants and heating rates generally used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The barrier height of MIS tunnel diodes is studied considering the effect of deep impurities. It is shown that the barrier height of a given MIS-system can be controlled by changing the density and the activation energy of the defect level. The study leads to the conclusion that deep impurities of character opposite to shallow impurities enhance the barrier height. On the other hand, the barrier height is lowered when the type of the deep impurities is the same as that of shallow impurities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deep‐level transient spectroscopy (DLTS) technique is reported for determining the capture cross‐section activation energy directly. Conventionally, the capture activation energy is obtained from the temperature dependence of the capture cross section. Capture cross‐section measurement is often very doubtful due to many intrinsic errors and is more critical for nonexponential capture kinetics. The essence of this technique is to use an emission pulse to allow the defects to emit electrons and the transient signal from capture process due to a large capture barrier was analyzed, in contrast with the emission signal in conventional DLTS. This technique has been applied for determining the capture barrier for silicon‐related DX centers in AlxGa1−xAs for different AlAs mole fractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level defects in annealed InP have been studied by using photoluminescence spectroscopy (PL), thermally stimulated current (TSC), deep level transient spectroscopy (DLTS), and positron annihilation lifetime (PAL). A noticeable broad PL peak centered at 1.3 eV has been observed in the InP sample annealed in iron phosphide ambient. Both the 1.3 eV PL emission and a defect at E-C-0.18 eV correlate with a divacancy detected in the annealed InP sample. The results make a divacancy defect and related property identified in the annealed InP. (c) 2006 American Institute of Physics.