1000 resultados para DNA analyysi
Resumo:
The Scots pine bark beetle, Tomicus piniperda is a secondary colonizer of pine and other conifers. It is a native species from Europe and Asia that was recently introduced in North America. Although it is necessary to understand this insect's interactions with other organisms, few studies have focussed on its fungal associates. This study focused on the effect of latitude in the occurrence of fungi associated with T. piniperda. T. piniperda were collected from Pinus sylvestris in Northern (Rovaniemi) and Southern (Hyytiala) Finland. Both endo- and epi- mycota were isolated. The fungi were identified using a combination of morphological features and molecular data. The results revealed a great diversity of fungi species associated with T. piniperda, with a total of 3073 isolates representing 23 species. The most frequently isolated fungi in the bark beetles from Northern Finland were Beauvaria bassiana, Kuraishia sp. and Penicillium sp. whereas P. brevicompactum and Mortierella sp. were mostly observed in the South. Ophiostoma canum and O. minus were also observed. The number of isolates per insect in the north was 2.83 epi- and 2.38 for endo-mycota fungus. In the south, the number of isolates per insect was 4.1 for epi- and 3.5 for endo-mycota. Statistical analysis indicated that there was significant differences in fungal populations associated with the beetles in Southern and Northern Finland. There was however no significant difference between the epi- and endo-mycota fungal populations. The highest richness and diversity of the fungal species was observed in the South. However, the overall fungal diversity index analysis revealed that the mycobiota was undersampled.
Resumo:
Megasphaera cerevisiae, Pectinatus cerevisiiphilus, Pectinatus frisingensis, Selenomonas lacticifex, Zymophilus paucivorans and Zymophilus raffinosivorans are strictly anaerobic Gram-stain-negative bacteria that are able to spoil beer by producing off-flavours and turbidity. They have only been isolated from the beer production chain. The species are phylogenetically affiliated to the Sporomusa sub-branch in the class "Clostridia". Routine cultivation methods for detection of strictly anaerobic bacteria in breweries are time-consuming and do not allow species identification. The main aim of this study was to utilise DNA-based techniques in order to improve detection and identification of the Sporomusa sub-branch beer-spoilage bacteria and to increase understanding of their biodiversity, evolution and natural sources. Practical PCR-based assays were developed for monitoring of M. cerevisiae, Pectinatus species and the group of Sporomusa sub-branch beer spoilers throughout the beer production process. The developed assays reliably differentiated the target bacteria from other brewery-related microbes. The contaminant detection in process samples (10 1,000 cfu/ml) could be accomplished in 2 8 h. Low levels of viable cells in finished beer (≤10 cfu/100 ml) were usually detected after 1 3 d culture enrichment. Time saving compared to cultivation methods was up to 6 d. Based on a polyphasic approach, this study revealed the existence of three new anaerobic spoilage species in the beer production chain, i.e. Megasphaera paucivorans, Megasphaera sueciensis and Pectinatus haikarae. The description of these species enabled establishment of phenotypic and DNA-based methods for their detection and identification. The 16S rRNA gene based phylogenetic analysis of the Sporomusa sub-branch showed that the genus Selenomonas originates from several ancestors and will require reclassification. Moreover, Z. paucivorans and Z. raffinosivorans were found to be in fact members of the genus Propionispira. This relationship implies that they were carried to breweries along with plant material. The brewery-related Megasphaera species formed a distinct sub-group that did not include any sequences from other sources, suggesting that M. cerevisiae, M. paucivorans and M. sueciensis may be uniquely adapted to the brewery ecosystem. M. cerevisiae was also shown to exhibit remarkable resistance against many brewery-related stress conditions. This may partly explain why it is a brewery contaminant. This study showed that DNA-based techniques provide useful tools for obtaining more rapid and specific information about the presence and identity of the strictly anaerobic spoilage bacteria in the beer production chain than is possible using cultivation methods. This should ensure financial benefits to the industry and better product quality to customers. In addition, DNA-based analyses provided new insight into the biodiversity as well as natural sources and relations of the Sporomusa sub-branch bacteria. The data can be exploited for taxonomic classification of these bacteria and for surveillance and control of contaminations.
Resumo:
Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.
Resumo:
Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.
Resumo:
To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.
Resumo:
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.
Resumo:
Recent studies have shown that human papillomavirus (HPV) DNA can be found in circulating blood, including peripheral blood mononuclear cells (PBMCs), sera, plasma, and arterial cord blood. In light of these findings, DNA extracted from PBMCs from healthy blood donors were examined in order to determine how common HPV DNA is in blood of healthy individuals. Blood samples were collected from 180 healthy male blood donors (18-76 years old) through the Australian Red Cross Blood Services. Genomic DNA was extracted and specimens were tested for HPV DNA by PCR using a broad range primer pair. Positive samples were HPV-type determined by cloning and sequencing. HPV DNA was found in 8.3% (15/180) of the blood donors. A wide variety of different HPV types were isolated from the PBMCs; belonging to the cutaneous beta and gamma papillomavirus genera and mucosal alpha papillomaviruses. High-risk HPV types that are linked to cancer development were detected in 1.7% (3/180) of the PBMCs. Blood was also collected from a healthy HPV-positive 44-year-old male on four different occasions in order to determine which blood cell fractions harbor HPV. PBMCs treated with trypsin were negative for HPV, while non-trypsinized PBMCs were HPV-positive. This suggests that the HPV in blood is attached to the outside of blood cells via a protein-containing moiety. HPV was also isolated in the B cells, dendritic cells, NK cells, and neutrophils. To conclude, HPV present in PBMCs could represent a reservoir of virus and a potential new route of transmission.
Development of novel DNA-based methods for the measurement of length polymorphisms (microsatellites)