374 resultados para DISCRETIZATION
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A direct discretization approach and an operator-splitting scheme are applied for the numerical simulation of a population balance system which models the synthesis of urea with a uni-variate population. The problem is formulated in axisymmetric form and the setup is chosen such that a steady state is reached. Both solvers are assessed with respect to the accuracy of the results, where experimental data are used for comparison, and the efficiency of the simulations. Depending on the goal of simulations, to track the evolution of the process accurately or to reach the steady state fast, recommendations for the choice of the solver are given. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.
Unstructured pressure-correction solver based on a consistent discretization of the Poisson equation
Resumo:
In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.
Resumo:
The finite state Markov-chain approximation methods developed by Tauchen (1986) and Tauchen and Hussey (1991) are widely used in economics, finance and econometrics to solve functional equations in which state variables follow autoregressive processes. For highly persistent processes, the methods require a large number of discrete values for the state variables to produce close approximations which leads to an undesirable reduction in computational speed, especially in a multivariate case. This paper proposes an alternative method of discretizing multivariate autoregressive processes. This method can be treated as an extension of Rouwenhorst's (1995) method which, according to our finding, outperforms the existing methods in the scalar case for highly persistent processes. The new method works well as an approximation that is much more robust to the number of discrete values for a wide range of the parameter space.
Resumo:
In the presence of inhomogeneities, defects and currents, the equations describing a Bose-condensed ensemble of alkali atoms have to be solved numerically. By combining both linear and nonlinear equations within a Discrete Variable Representation framework, we describe a computational scheme for the solution of the coupled Bogoliubov-de Gennes (BdG) and nonlinear Schrodinger (NLS) equations for fields in a 3D spheroidal potential. We use the method to calculate the collective excitation spectrum and quasiparticle mode densities for excitations of a Bose condensed gas in a spheroidal trap. The method is compared against finite-difference and spectral methods, and we find the DVR computational scheme to be superior in accuracy and efficiency for the cases we consider. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mixing between estuarine and coastal waters is strongly dependent on the processes that occur in the vertical direction. This applies both for stratified and homogeneous estuaries. In homogeneous estuaries important recirculation flows in the vertical plane can arise, in regions with strong batimetry gradients, produced by the combined action of inertia and friction. On the Platform close to the inlet this structures can trap estuarine water during the ebb period, releasing it to the interior again during the flood.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.