992 resultados para DIFFERENTIAL PROTECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generator differential protection is one of the most important electrical protections of synchronous generator stator windings. Its operation principle is based on the comparison of the input current and output current at each phase winding. Unwanted trip commands are usually caused by CT saturation, wrong CT selection, or the fact that they may come from different manufacturers. In generators grounded through high impedance, only phase-to-phase or three-phase faults can be detected by the differential protection. This kind of fault causes differential current to flow in, at least, two phases of the winding. Several cases of unwanted trip commands caused by the appearance of differential current in only one phase of the generator have been reported. In this paper multi-phase criterion is proposed for generator differential protection algorithm when applied to high impedance grounded generators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A microgrid provides economical and reliable power to customers by integrating distributed resources more effectively. Islanded operation enables a continuous power supply for loads during a major grid disturbance. Reliability of a microgrid can be further increased by forming a mesh configuration. However, the protection of mesh microgrids is a challenging task. In this paper, protection schemes are discussed using current differential protection of a microgrid. The protection challenges associated with bi-directional power flow, meshed configuration, changing fault current level due to intermittent nature of DGs and reduced fault current level in an islanded mode are considered in proposing the protection solutions. Relay setting criterion and current transformer (CT) selection guidelines are also discussed. The results are verified using MATLAB calculations and PSCAD simulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microgrids (MG) enable the integration of low capacity renewable energy resources with distribution systems. A recently proposed protection scheme for MGs utilising undervoltage, High Impedance Fault (HIF) detection, directional protection modules, and communication links significantly reduces the fault clearing time compared to previous schemes. In this paper, the effect of replacing undervoltage protection with differential protection in a scheme that also contains HIF and directional protection modules is studied. The MG model used in this study includes a diesel, wind, and two photovoltaic (PV) microsources. The alternative protection schemes are evaluated by simulation. It is found that the protection scheme consisting of differential, HIF detection, and directional protection modules is more effective compared to the alternative in protecting the MG from some fault conditions such as the phase-A-to-ground, phase-B-to-C, and phase-B-to-C-to-ground.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde seu lançamento, em 2002, a Norma IEC 61850 vem evoluindo para se tornar o padrão adotado nos Sistemas de Automação de Subestações. Dentre seus vários aspectos, destacam- se os serviços de tempo real, que permitem a implementação de funções de automação e de proteção dentro da subestação através da troca de mensagens específicas entre Dispositivos Eletrônicos Inteligentes através de um barramento digital de rede de dados. O objetivo central deste trabalho é explorar algumas das questões que envolvem a implementação de uma classe de serviços de tempo real: a transmissão de valores amostrados através de Serviços SMV, definidos pela Norma IEC 61850-9. Primeiramente, apresenta-se um breve resumo das principais características da Norma IEC 61850 que possibilitam o atendimento dos três requisitos por ela estabelecidos como base: a interoperabilidade entre dispositivos de diferentes fabricantes, a versatilidade na configuração e reconfiguração do Sistema de Automação da Subestação, e a possibilidade de implementação de novas tecnologias. Em seguida, explora-se com maior profundidade todos os aspectos relevantes à implementação dos Serviços SMV. Devido à complexidade deste assunto, o autor propõe abordá-lo sob a ótica de cinco tópicos interdependentes: variações da Norma IEC 61850-9, confiabilidade do barramento de processo, sincronismo de tempo, análise da qualidade da medição e segurança cibernética. Com base nos resultados apresentados neste estudo, propõem-se duas plataformas, um protótipo de Transformador de Potencial Óptico e um protótipo de Relé de Proteção Diferencial para transformadores de potência, com o objetivo de explorar alguns dos aspectos pertinentes à implementação de um barramento de processo de acordo com a Norma IEC 61850-9. Também foram realizados testes de geração e transmissão de mensagens contendo valores de amostras de tensão/corrente do sistema elétrico (denominadas de SV Messages) com a finalidade de implementá-las de fato e avaliar as ferramentas de mercado disponíveis. Por fim foi proposto um modelo para a simulação do sistema de potência em conjunto com a rede de comunicação utilizando o programa Matlab/Simulink. O autor espera que este trabalho contribua para esclarecer os vários conceitos envolvidos na implementação do barramento de processo definido pela Norma IEC 61850-9, auxiliando na pesquisa e no desenvolvimento de novas ferramentas e dispositivos, e no aprimoramento da Norma IEC 61850.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.