951 resultados para DECORATED LATEX
Resumo:
The interaction between cationic bilayer fragments and a model oligonucleotide was investigated by differential scanning calorimetry, turbidimetry, determination of excimer to monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidyl-choline in bilayer fragment dispersions and dynamic light scattering for sizing and zeta-potential analysis. Salt (Na(2)HPO(4)), mononucleotide (2`-deoxyadenosine-5`-monophosphate) or poly (dA) oligonucleotide (3`-AAA AAA AAA A-5`) affected structure and stability of dioctadecyldimethylammonium bromide bilayer fragments. Oligonucleotide and salt increased bilayer packing due to bilayer fragment fusion. Mononucleotide did not reduce colloid stability or did not cause bilayer fragment fusion. Charge neutralization of bilayer fragments by poly (dA) at 1:10 poly (dA):dioctadecyldimethylammonium bromide molar ratio caused extensive aggregation, maximal size and zero of zeta-potential for the assemblies. Above charge neutralization, assemblies recovered colloid stability due to charge overcompensation. For bilayer fragments/poly (dA), the nonmonotonic behavior of colloid stability as a function of poly (dA) concentration was unique for the oligonucleotide and was not observed for Na(2)HPO(4) or 2`-deoxyadenosine-5`-monophosphate. For the first time, such interactions between cationic bilayer fragments and mono- or oligonucleotide were described in the literature. Bilayer fragments/oligonucleotide assemblies may find interesting applications in drug delivery. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.
Resumo:
Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.
Resumo:
Natural Rubber Latex (NRL) can be used successfully in controlled release drug delivery due to their excellent matrix forming properties. Recently, NRL has shown to stimulate angiogenesis, cellular adhesion and the formation of extracellular matrix, promoting the replacement and regeneration of tissue. A dermatological delivery system comprising a topically acceptable, inert support impregnated with a metronidazole (MET) solution was developed. MET 2-(2- methyl- 5-nitro- 1H- imidazol- 1-yl) ethanol, has been widely used for the treatment of protozoa and anaerobic bacterial infections. MET is a nitroimidazole anti-infective medication used mainly in the treatment of infections caused by susceptible organisms, particularly anaerobic bacteria and protozoa. In a previous study, we have tested NRL as an occlusive membrane for GBR with promising results. One possible way to decrease the inflammatory process, it was incorporated the MET in NRL. MET was incorporated into the NRL, by mixing it in solution for in vitro protein delivery experiments. The solutions of latex and MET were polymerized at different temperatures, from -100 to 40 °C, in order to control the membrane morphology. SEM microscopy analysis showed that the number, size and distribution of pores in NRL membranes varied depending on polymerization temperature, as well as its overall morphology. Results demonstrated that the best drug-delivery system was the membrane polymerized at -100 °C, which does release 77,1% of its MET content for up 310 hours.
Resumo:
In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.
Resumo:
This paper presents the characterization of poly(aniline) (PANI) and poly(methyl methacrylate) (PMMA) coatings obtained by mixing PANI with PMMA aqueous dispersions (latex particles). These dispersions were characterized by using dynamic light scattering for sizing, zeta-potential analysis and thermal analysis. PMMA and PANI/PMMA dispersions show negative charged particles with zeta potential greater than |40| mV, a zeta-average diameter of 64 nm for pure PMMA and a bi-modal particle-size distribution centered at 45 and 120 nm for a mixture with 25% w/w of PANI. Films obtained by casting were characterized by using scanning electron microscopy and they show a conductivity increase upon PANI content reaching a value of 1 mS cm(-1) for a film with 25% w/w of PANI. In addition, Raman spectroscopy have shown the presence of the conducting form of PANI in the films and cyclic voltammetry experiments corroborated that they are electroactive in both acid and neutral solutions.
Resumo:
First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.
Resumo:
Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as 'sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an are-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r=0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars.
Resumo:
We studied the anisotropic aggregation of spherical latex particles dispersed in a lyotropic liquid crystal presenting three nematic phases; calamitic, biaxial, and discotic. We observed that in the nematic calamitic phase aggregates of latex particles are formed, which become larger and anisotropic in the vicinity of the transition to the discotic phase, due to a coalescence process. Such aggregates are weakly anisotropic and up to 50 mu m long and tend to align parallel to the director field. At the transition to the discotic phase, the aggregates dissociated and re-formed when the system was brought back to the calamitic phase. This shows that the aggregation is due to attractive and repulsive forces generated by the particular structure of the nematic phase. The surface-induced positional order was investigated by surface force apparatus experiments with the lyotropic system confined between mica surfaces, revealing the existence of a presmectic wetting layer around the surfaces and oscillating forces of increasing amplitude as the confinement thickness was decreased. We discuss the possible mechanisms responsible for the reversible aggregation of latex particles, and we propose that capillary condensation of the N(C) phase, induced by the confinement between the particles, could reduce or remove the gradient of order parameter, driving the transition of aggregates from solidlike to liquidlike and gaslike.
Resumo:
This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: To describe the presence of iris neovascularization in a rabbit-model of retinal neovascularization induced by the intravitreal injection of latex-derived angiogenic fraction microspheres (LAF). Materials and Methods: Eight New Zealand rabbits received one intravitreal injection of PLGA (L-lactide-coglycolide) microspheres with 50 ug of LAF in the right eye (Group A). Microspheres without the LAF (0.1 ml) were injected in controls (Group B; n = 8). Follow-up with clinical evaluation and iris fluorescein angiography was performed after 4 weeks when eyes were processed for light microscopy. Results: All eyes from Group A showed significant vascular dilation, conjunctival hyperemia and neovascularization on the iris surface, after LAF injection. No vascular changes were observed in Group B. Conclusions: The intravitreal injection of microspheres containing the LAF can induce rubeosis iridis in rabbits and could be used as a simple experimental model for iris neovascularization.
Resumo:
Increases in vascular permeability and angiogenesis are crucial events to wound repair, tumoral growth and revascularization of tissues submitted to ischemia. An increased vascular permeability allows a variety of cytokines and growth factors to reach the damaged tissue. Nevertheless, the angiogenesis supply tissues with a wide variety of nutrients and is also important to metabolites clearance. It has been suggested that the natural latex from Hevea brasiliensis showed wound healing properties and angiogenic activity. Thus, the purpose of this work was to characterize its angiogenic activity and its effects on vascular permeability and wound healing. The serum fraction of the latex was separated from the rubber with reduction of the pH. The activity of the dialyzed serum fraction on the vascular permeability injected in subcutaneous tissue was assayed according Mile`s method. The angiogenic activity was determined using a chick embryo chorioallantoic membrane assay and its effects on the wound-healing process was determined by the rabbit ear dermal ulcer model. The serum fraction showed evident angiogenic effect and it was effective in enhancing vascular permeability. In dermal ulcers, this material significantly accelerated wound healing. Moreover, the serum fraction boiled and treated with proteases lost these activities. These results are in accordance with the enhancement of wound healing observed in clinical trials carried out with a biomembrane prepared with the same natural latex. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Purpose: To create a retinal neovascularization experimental model using intravitreal injection of microspheres loaded with latex-derived angiogenic fraction. Methods: Thirty-two albino New Zealand rabbits, divided in 4 groups of 8 animals, were enrolled in this study. Rabbits in groups I, II, and III received one intravitreal injection of PLGA (L-lactide-co-glycolide) microspheres with 10, 30, and 50 mu g of latex-derived angiogenic fraction into their right eyes, respectively, and group IV received 0.1 ml of microspheres without the angiogenic fraction. Weekly follow-up with ophthalmoscopy and fluorescein angiography was performed; the rabbits were sacrificed in the 4th week and their eyes processed for light microscopy. Results: All eyes from group I demonstrated increased retinal vascular tortuosity, observed from 14 days after injection and maintained for 28 days, otherwise without new vessels detection. All group II eyes showed vascular changes similar to group I. Fifty percent of the eyes from group II rabbits developed retinal neovascularization 21 days after injection. All eyes from group III demonstrated significant vascular tortuosity and retinal new vessels 2 weeks after injection, progressing to fibrovascular proliferation and tractional retinal detachment. No vascular changes or retinal new vessels were observed in group IV eyes. Light microscopy confirmed the existence of new vessels previously seen on fluorescein angiography, in retinal sections adjacent to the optic disc, not observed in sections at the same area in the control group. Conclusion: Thirty- and 50-mu g microspheres containing latex-derived angiogenic fraction injected into the vitreous cavity induced retinal neovascularization in rabbits.
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aim of the study: The latex of Calotropis procera has been used in the traditional medicinal system for the treatment of leprosy, ulcers, tumors, piles and diseases of liver, spleen, abdomen and toothache. it comprises of a non-dialyzable protein fraction (LP) that exhibits anti-inflammatory properties and a dialyzable fraction (DF) exhibiting pro-inflammatory properties. The present study was carried out to evaluate the effect of LP sub-fractions on neutrophil functions and nociception in rodent models and to elucidate the mediatory role of nitric oxide (NO). Material and methods: The LP was subjected to ion exchange chromatography and the effect of its three sub-fractions (LP(PI), LP(PII), and LP(PIII)) thus obtained was evaluated on leukocyte functions in the rat peritonitis model and on nociception in the mouse model. Results: LP sub-fractions exhibit distinct protein profile and produce a significant decrease in the carrageenan and DF induced neutrophil influx and exhibit anti-nociceptive property. The LP and its sub-fractions produced a marked reduction in the number of rolling and adherent leukocytes in the mesenteric microvasculature as revealed by intravital microscopy. The anti-inflammatory effect of LP(PI), the most potent anti-inflammatory fraction of LP, was accompanied by an increase in the serum levels of NO. Further, our study shows that NO is also involved in the inhibitory effect of LP(PI) on neutrophil influx. Conclusions: Our study shows that LP fraction of Calotropis procera comprises of three distinct sets of proteins exhibiting anti-inflammatory and anti-nociceptive properties of which LP(PI) was most potent in inhibiting neutrophil functions and its effects are mediated through NO production. (C) 2009 Elsevier Ireland Ltd. All rights reserved.